\
JAKARTA EE

Jakarta Persistence

Jakarta Persistence Team, https://projects.eclipse.org/projects/ee4j.jpa

3.2, April 10, 2024:

Table of Contents

Eclipse Foundation Specification LICeNSe - V1. 1. e e e e e 2
DISCLAIIMIETS . . . oottt ettt ettt e e e e e e e e e 2
L INETOAUCTIONL . . oottt et ettt e e e e e e e 3
1L AUTROTS I, . .o e 3
1.2. Document CONVENTIONSttt ittt ettt et ettt ettt et ettt et it it e e 3
/00 53 (18 L8 (=T 4
2 N T 53 ¢ 7 4
2.2. Persistent Fields and Propertiesoouiuiiiiiii ittt ettt 4
2.2.1. Persistent AttrIDUte Ty . . . oottt e e 5
2.2, 2. PrOPEITY ACCESS . ittt ittt ettt ettt ettt et e e e e e 5
2.3, ACCESS Ty D . . ettt ettt ettt e e 7
2.3, L. D AUt ACCESS Ty P .« vttt ettt ittt ettt ettt et e e e e e e e e e 7
2.3, 2. EXPLICIt ACCESS Ty P . o vttt ittt ittt ettt e e e e e e e e e e e e 8
2.3.3. Access Type of an Embeddable Class et e e 9
2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclassesccooviiiiiinnnn... 9
2.4. Primary Keys and Entity IAeNUItYoooiitiii ittt et 9
2.4.1. Composite Primary KeYS e e e e e 10
2.4.2. Primary Keys Corresponding to Derived Identities.oo i 11
2.4.2.1. Specification of Derived Identities. et 11
2.4.2.2. Mapping of Derived Identities et 12
2.4.2.3. Examples of Derived Identities. e e e 12

2. BNy VI SIOMIS . . o o ettt ittt ettt ettt e e e et e 19
2.8, BaSIC T DS « « vttt ittt ittt 20
2.7. Embeddable CLasSesttt 20
2.8. Collections of Embeddable Classes and BasiC TYPES.ttt 21
2.9. MaP COLlECHIOMIS . . o ottt ettt ettt ettt e e et 21
2.0, 0. VAP KOS L.t e 21
2.9.2. MaP Values . .o e 22
2.10. Mapping Defaults for Non-Relationship Fields or Propertiesc.cooiiiiiiiiiiiiiiiiiiiiiiiinnn, 22
210, Entity RelationSips . . oo oo 22
2.12. Relationship Mapping Defaults e e 24
2.12.1. Bidirectional OneToOne Relationshipsoiiiiiiiiiiii i e 24
2.12.2. Bidirectional ManyToOne / OneToMany Relationships et 25
2.12.3. Unidirectional Single-Valued Relationships e e 26
2.12.3.1. Unidirectional OneToOne Relationships e 26
2.12.3.2. Unidirectional ManyToOne Relationships. e e 27

2.12.4. Bidirectional ManyToMany Relationships 28
2.12.5. Unidirectional Multi-Valued Relationships.o e 29
2.12.5.1. Unidirectional OneToMany Relationships. e e 29
2.12.5.2. Unidirectional ManyToMany Relationships 30

2.3 INNeTItANCE . . oot e e 31
2.13.1. ADStract ENTILY ClaSSESttt ettt ettt et e e e e e e e e e e 31
2.13.2. MapPed SUPETCLASSES ettt ettt ettt et e e e e e 32

2.13.3. Non-Entity Classes in the Entity Inheritance Hierarchyo .. 33

2.14. Inheritance Mapping Strategies.t 34

2.14.1. Single Table per Class Hierarchy Strategy.oouuiiiiiiiiiiii it e e 35
2.14.2. Joined SUDCLASS STrategYttt e e e e e e e e e e 35
2.14.3. Table per COnCrete Class Strategyvuu vttt ettt ettt ettt ettt e e e e e e e e e e e 35
2.15. Naming of Database ODJeCtS. e 35
3. ENTIEY OPETAtIONIS . . . oottt ettt ettt e e e e e e e e e e 39
B 0775 i 2) 39
3.2, EntityManager INterface 39
3.3 Entity Instance’s Life CYCle e 41
3.3.1. Entity INStAnCe CrEatioN.ttt et ettt ettt e e e e e e e e e e e e e 41
3.3.2. Persisting an ENtity INSTANCEttt e e e e e e 41
3.3 3. REIMOVAL. . oot e 41
3.3.4. Synchronization to the Database. e 42
3.3.5. Refreshing an ENtity INSTANCE.ttt e et e e e e et 43
3.3.6. Evicting an Entity Instance from the Persistence Context...............oiiiiiiiiiiiieeenn. 43
3.3.7.Detached ENtIties. . ..ot e 43
3.3.7.1. Merging Detached Entity State ettt 44
3.3.7.2. Detached Entities and Lazy Loading.ot 45

3.3.8. Managed INSLANICES ettt ettt et e e e e e e e e e 45
3,300, L0ad State ..o e 45
3.4. Persistence Context Lifetime and Synchronization Typettt 46
3.4.1. Synchronization with the Current TransSactionouutiiiii ittt ee e 47
3.4.2. Transaction COMIMILttt ettt e it it 47
3.4.3. Transaction ROIIDACK i i e 47
3.5. LOCKING @Nd CONMCUITEIICY .+« o o ettt e et e e et ettt et ettt ettt ettt ettt ettt e e e e e e et e e e ees 47
3.5.1. OptimistiC LOCKING. e e e e e e e e e 48
3.5.2. Entity Versions and Optimistic LOCKING.ttt e e 49
3.5.3. PesSImIStIC LOCKINIE e e e e e e e e e e e e 49
3.5 4. LOCK MOOES . . ettt e 51
3.5.4.1. OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENTttt e 51
3.5.4.2. PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT..................... 52
3.5.4.3. Lock Mode Properties and USeSottt 53

3.5.5. OptimiStiCLOCKERCEPLION. ee ettt ettt e e e e e e e e e e e e e e e e 54
3.6. Entity Listeners and Callback Methods e e 54
3.6. 1. ENULY LISTEIIETS ...ttt ettt e et e e e e e e e e e e 55
3.6.2. Lifecycle Callback Methods.t e e e e e 56
3.6.3. Semantics of the Life Cycle Callback Methods for Entities i 57
3.6.4. Multiple Lifecycle Callback Methods for an Entity Lifecycle Event, 58
36,5, BB P IOMIS . o oottt e 60
3.6.6. Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor 60
3.6.6.1. Specification of Callback LiSteNers et 60
3.6.6.2. Specification of the Binding of Entity Listener Classes to Entities.ooooi... 61
3.7.Bean Valildationot 61
3.7.1. Automatic Validation Upon Lifecycle EVENtSottt e 61
3.7.1.1. Enabling Automatic Validation. o e 62

3.7.1.2. Requirements for Automatic Validation upon Lifecycle Events.o, 62

3.7.2. Providing the ValidatOrFaCtoTyuuuurtt e et e e e e et et e e 63

38 BNty Graphs .« o oo oot 63
3.8.1. Use of Entity Graphs in find and query operations. 63
3.8.1.1. Fetch Graph SemantiCs.o oovtt ittt e 64
3.8.1.2. Load Graph SemMantiCsouuii ittt e 66

3.9. Type Conversion of BasiC AttriDULES. e e e e e 68
3.10. Second-Level Cache 70
3.10.1. The Shared Cache Mode and Cacheable Annotation ... 70
3.10.2. CaChE MOGES . . . vttt e e 71
3.10.3. Cache INerTace . ..o e 73

B L QUETLY APIS oottt 73
3.11.1. QUETY EXECULIONL ...ttt ettt et e e e e e e e e e e e e e e e 73
3.11.2. Queries and FIUSh MOottt ettt e e e 74
3.11.3. Queries and LOCK MOGe . . .o oottt ettt e e et e e e e ettt e e e 75
3104 QUETY HINES. oo e 76
3.11.5. Parameter ODJECTS e e 76
3.11.6. Named Parameters v vttt ettt ettt e e e e e 76
3.11.7. Positional Parameters.ottt e 77
3.11.8. Arguments t0 QUETY PATAIMIELETSot vttt ettt ettt ettt ettt e et ettt 77
3.11.9. NAIMEd QUETIES. .« .t ottt ettt ettt et ettt e e e e e e et e e e e e e e ettt e e e e e e e 77
3.11.10. POlymoOrphiC QUETIESttt et ettt e e e e e e e e e e e e e e e 77
RS20 B B T) 0 0 1< T PP 78
3.11.11.1. Returning Managed Entities from Native QUeriesc.iuiiiiiiiiiiiiinnnnn.. 78
3.11.11.2. Returning Unmanaged INSTANCES e 81
3.11.11.3. Combinations 0f ReSULt TYPESt et 82
31114, ReSIIICHONS . o ottt e e e 82
311,12, StOTed ProCEAUTES.ottt et e e 82
3.11.12.1. Named Stored Procedure QUETIES.uuuutit et ettt e e ettt iiee e e eeennns 82
3.11.12.2. Dynamically-specified Stored Procedure QUETriesS.uuuiiiititiiieeeeeennnnnnnnnnnn. 83
3.11.12.3. Stored Procedure Query EXeCUtiON.o 83

3.12. SUMMATY Of EXCEPUIONS. . o o oottt sttt ettt ettt et e 84
4 QUETY LANGUAZE oottt ettt ettt ettt et e e e e e e 87
O k=) 74 1= 87
] =113 1= L 172 6T 87
4.2.1. SeleCt StateIMeIITSottt e 88
4.2.1.1. Set Operators in Select StateIMEeNTSttt e e et 88

4.2.2. Update and Delete StatemMents 88
4.3. Abstract Schema Types and QUery DOMAINSottt 89
3 T80 U\ D4 210 P 89
I T =5 €2 Y 1 11 ¢) (=P 89
4.4. The FROM Clause and Navigational Declarations.t 90
R (6 1=3 410) 91
4.4.2. Identification Variables e 92
4.4.3. Range Variable Declarations. e 93
444, Path EXPIeSSIONS o oottt ittt ettt e 93

4.4.4.1. Path EXPresSiOn SYNMEAKttt ettt ettt ettt et e e e e 95

4.5.
4.6.

4.7.

4.8.
4.9.

5. JOIMIS. o ottt e 96

4450 I JOIIIS . o ottt ettt et e e 97

4452, OULET JOINS . . oottt ettt ettt e e e 98

44.5.3. Pt OIS . o oot e 100
4.4.6. Collection Member Declarationsttt i i 100
4.4.7. FROM Clause and SQLttt ettt et et e ettt e e e e e ettt e e et e i 101
4.4.8. POLYMOTPRISITLot e e e e e e e e 101
4.4.9. DOWIICASTIIIE . . ettt ettt ettt e e e e e 101
WHERE ClaUSe . . o oottt ettt e et e ettt et e e 102
Conditional EXPIESSIONS . .« oo vttt ittt ittt ittt ettt et e et e 102
4.6.1. Conditional EXpression COMPOSITIONo v vvtt ettt ittt ettt et e e e et ee e 102
4.6.2. Operators and Operator PreCedenceoouuiiiiiiii ittt e 103
4.6.3. COMPAriSON EXPIESSIONS\ttt ettt ettt ettt ettt ettt e e e e e e e e e e et e e e 103
4.6.4. BEtWEEI EXPIrOSSIONSottt ettt ettt ettt ettt ettt et e e e e e e e e e e e 103
4.6.5. IN EXPIESSIONS . . .ottt ettt e e e e e e e 104
4.6.6. LIKE EXPIESSIONSttt et ettt ettt e e e e e e e e e e e 105
4.6.7. Null Comparison EXPreSSIONSttt ettt ettt e e et et e e 105
4.6.8. Empty Collection Comparison EXPresSSiOnsS.oouuutttttt ittt ettt et e 105
4.6.9. Collection Member EXPIreSSIONS. v v vttt et ettt ettt ettt et e e e e e et e ee e 106
4.6.10. EXISES EXPIESSIONIS. . . . vt vttt ettt ettt ettt ettt ettt ettt e e e e e e e e e e e e e e 106
4.6.11. ALl OF ANY EXPIreSSIONS. . . v vt vttt ettt et ettt ettt ettt ettt et e e e e e e e e e e e e e e e 107
4.6.12. SUDQUETIES . ..t e e e 107
4.6.13. NULLVALUES . ..o 108
4.6.14. Equality and ComparisSon SEMANTICSo vvttttt ittt ettt ettt ettt et e 109

4.6.14.1. Queries Using INput Parameters 111
SCAlAT EXPIESSIONS . .o vttt ettt ettt ettt ettt ettt e e e e e e e e 111
R O 0 =3 - 1 3 111
4.7.2. Identification Variables 112
4.7.3. Path EXPIESSIONSttt ettt ettt et e e e e e e e e e e e e 112
4.7.4. INPUL PATAITIETETS. . . oottt ettt ettt ettt et e e e ettt e e et 112

4.7.4.1. Positional Parameters. e 112

4.7.4.2. Named ParaImetersttt ittt e 113
4.7.5. ATIthIMetiC EXPIeSSIONSttt ettt ettt e et e e e e e e e e e e e e e e 113
4.7.6. String CONCAtENAtION OPETATOYttt vttt ettt ettt ettt ettt ettt e e e e e e e e e e 113
4.7.7. Built-in String, Arithmetic, and Datetime Functional EXpressionsc.uuuiiiiiiieeeeneenn.. 113

4.7.7.0. StrING FUNCHONIS . « . oo vttt ettt ettt e ettt e e e e ettt 113

4.7.7.2. Arithmetic FUNCHIONS i i i 114

4.7.7.3. Datetime FUNCHONSo i i e 115
R T 14 ¢ 1= 2 T 2 116
4.7.9. Invocation of Predefined and User-defined Database Functions oo, 116
4.7.10. CaSE EXPIESSIONISt vttt ettt et ettt ettt ettt ettt ettt et e e e e e e e e e e 117
4.7.11. Identifier and Version FUNCHONS.t e e i 118
4.7.12. Entity Type Expressions and Literal Entity Types. oo e 118
4.7.13. Numeric Expressions and Type Promotiono ee e 119
GROUP BY, HAVING. . . .ottt ettt ettt et e et e et e e e e et e e e et e e ettt e e 120
SELECT CLAUSE . . vttt ittt ettt ettt et e ettt et e e et e et et 121

4.9.1. Result Type of the SELECT CLaUSEottt vttt ettt ettt ettt e e e e e e e e e e e e 122

4.9.2. Constructor Expressions in the SELECT Clauseooiii i e 123
4.9.3. Null Values in the QUery Result.ttt e e 123
4.9.4. Embeddablesin the Query Result.t e 123
4.9.5. Aggregate Functions in the SELECT Clause. ootiiii ittt e 124
4.10. ORDER BY ClAUSE. . . .o vttt ettt et ettt e ettt ettt e e ettt e et 125
4.11. Bulk Update and Delete OPerationsuuut ettt et ettt ettt et 127
A L2 BN 128
S.Metamodel API ... e 134
5.1. Static Metamodel CLaSSES.ottt e e e 134
5.1.1. Canonical Metamodel. 134
5.1.1.1. Example Canonical Metamodel i 136

5.1.2. Bootstrapping the Static Metamodel. e 137
5.2. Runtime Access to Metamodel. 137
6. CrIteria AP . . oo e 138
LT 01775 i 4 =) 138
6.2. Criteria QUETY API USa e, . ..ttt et e e e e e e e e 138
6.3. Constructing Criteria QUETIES.ttt ittt ittt ettt ettt et ettt 139
6.3.1. CriteriaQuery Creation.ttt ettt ettt e e 139
6.3.2. QUETY ROOTS. . oottt e e 139
8.3.3. JOIIS oottt 140
6.3.4. FetCh JOIMS . . o oottt 141
6.3.5. Path Navigationo oot 142
6.3.6. Restricting the QUery Result. e e 143
6.3.7. DOWIICASTIILE . . o o ettt ettt ettt ettt et e 143
TR TR T 55-q) 113 () 41 A 144
6.3.8.1. Result Types Of EXPIESSIONSttt ettt ettt ettt e e et 146

6.3.9. LItralSottt 147
6.3.10. Parameter EXPIeSSIONSt e 148
6.3.11. Specifying the Select List. e 148
6.3.11.1. Assigning Aliases to SeleCtion IteIMSttt i e 150

6.3.12. SUDQUETIES . ..ottt 150
6.3.13. GroupBy and Having e 153
6.3.14. Ordering the QUEery RESULLS e e e e e 153
6.3.15. Bulk Update and Delete OPerationsttt ettt ettt ettt 155
6.4. Constructing Strongly-typed Queries using the jakarta.persistence.metamodel Interfaces................... 157
6.5. Use of the Criteria API with Strings to Reference Attributes ...ttt 157
6.6. QUETY MOGIfICATION.\ttt et et e e e e e e e 159
6.7. QUETY EXECULIONo ettt ettt ettt et e e e e e e e e e e e e e 159
7. Entity Managers and PersistenCe COMTEXTS.ttt ettt ettt e e e et et 161
7.1, PersiSteniCe COMEXES. . .. v ittt ettt ettt e ettt e ettt e e e 161
7.2. Obtaining an ENtityManager oottttt ittt ittt ettt et e et 161
7.2.1. Obtaining an Entity Manager in the Jakarta EE Environment. oottt 161
7.2.2. Obtaining an Application-managed Entity Managerouuiiiiieeininnnnniiiiiiiiiiiinnnns 162

7.3. Obtaining an Entity Manager FaCtOryottt ettt 162

7.3.1. Obtaining an Entity Manager Factory in a Jakarta EE Containeroiiiiiiinnnnnn. 162

7.3.2. Obtaining an Entity Manager Factory in a Java SE Environment..................ooiiiiiiiinnnnnnn. 163

7.3.3. Obtaining an Entity Manager Factory for a programmatically-defined persistence unit................ 163
7.4. EntityManagerFactory Interfacet e 163
7.5. CoNtrolling TranSACtIONSttt ettt ettt ettt et et e e e e e e e 164

7.5. 1. JTA ENUIEYMANAGETS . . oottt ittt ettt e ettt ettt e 164

7.5.2. Resource-10cal ENUtYMaNAZEIS . . . ottt ettt ettt ettt et e e 164

7.5.3. The EntityTransaction INterfaceo i i e 164
7.6. The runInTransaction and callinTransaction methods........... o i i i 165
7.7. Container-managed Persistence CONMEXTS.ottt ettt ettt 166

7.7.1. Persistence Context SyNnChronization TYPe.ttt e 166

7.7.2. Container-managed Transaction-scoped Persistence CONtext...........ooviiiiiiiiiiiinniiinnnnnnn. 167

7.7.3. Container-managed Extended Persistence CONTEXtouueiiittiittttnnnnn it 167

7.7.3.1. Inheritance of Extended Persistence CONteXt.ouuiiiiiiiiiiiiiiii i, 167

7.7.4. Persistence Context Propagation. i i e 167

7.7.4.1. Requirements for Persistence Context Propagationouiiiiiiniiiiiiiinniinnnnn. 168
7.8. Application-managed Persistence CONtEXESottt ettt 169
7.9. Requirements on the CONtAINET.ttt ettt 173

7.9.1. Application-managed Persistence CONTEXESttt eeeaes 173

7.9.2. Container Managed PersistenCe CONMTEXTSuuttttt ettt ettt e e eeaes 173
7.10. Runtime Contracts between the Container and Persistence Provider...................coiiiiiiiii. .. 173

7.10.1. Container ReSponSibilities e 173

7.10.2. Provider ResponsSibilities. 174
7.11. PersistenceUnitUtil Interface. 175
7.12. SchemaManager INterfacettt e e e e 175

8. BNty PaCKa I g . . . oottt 176
8.1, Persistence UNit. e 176
8.2. Persistence Unit PaCkaging.ttt ettt e 176

8.2.1. persistence. XMl file.o e e 177

B2 L MAIMEo 178
8.2, 1. 2.t AN AT O P . o oottt 178
8.2.1.3. dESCTIPLIONL. . o oottt ettt 178
IO S ¢) 0)14 o (=) o 178
8.2, LS. qUALITI T . . o o 178
8.2, LB, SCOP . . ettt 179
8.2.1.7. jta-data-source, NON-jta-data-SOUICEttt ettt ettt ettt et 179
8.2.1.8. mapping-file, jar-file, class, exclude-unlisted-classeso ittt 179
8.2.1.9. shared-cache-mode o e 182
8.2.1.10. validation-Inode. ot e 182
8.2, L. 1L, PrOPEITIES & ottt ettt e 182

8.2.2. PersiStenCe UNIt SCOPEottt ittt ettt ettt e et e 186
8.3. persistence. XML SChemia e 186

9. Container and Provider Contracts for Deployment and BoOtStrappingooouiiiiiiiiiiiinniiinnnnnnn. 193
9.1. Jakarta EE DeplOYIMENtottt ettt et e et e e e 193
9.2. Bootstrapping in Java SE ENVIFONIMENTSo o oottt ettt 193

9.2.1. Schema GeNETatiON.ottt ettt e e e 194

9.3. Determining the Available Persistence Providers.t 195

LS Y =) b B <) q =D ir= 1 (0) o S AP 195

0.4.1.Data Loading. vvve ittt e e 198
9.5. Responsibilities of the Persistence Provider.t 198
9.5.1. jakarta.persistence.spi.PersistenCePrOVIAEr. et e 199
9.5.2. jakarta.persistence.spi.ProviderUtil o 199
9.6. jakarta.persistence.spi.PersistenceUnitInfo Interface i i 199
9.6.1. jakarta.persistence.spi.ClassTransformer Interface.ttt 201
9.7. jakarta.persistence.PersistenCe Class.ouuiiii ittt e e 201
9.8. jakarta.persistence.PersistenceConfiguration Class. 203
9.9. PersistencelUtil INterfaceottt e e e e 203
9.9.1. Contracts for Determining the Load State of an Entity or Entity Attribute............................. 204

10. Metadata ANNOTATIONSttt e ettt et e e e e e e e e e e 206
020 =5 o /2 206
10.2. Callback ANNOTATIONS . . .« v vttt ettt ettt ettt ettt e e e e et e 206
10.3. EntityGraph ANNOTAtIONSottt ittt ettt e e 207
10.3.1. NamedEntityGraph and NamedEntityGraphs Annotationsoooiiiiiiiiiiiiiniiiiinnn 207
10.3.2. NamedAttributeNode ANNOTAtION.ttt e e e 208
10.3.3. NamedSubgraph ANNOTATIONt ettt ettt e e 208
10.4. ANNOtAtioNs fOr QUETIESttt ettt ettt ettt e ettt et e e e e et e e 209
10.4.1. NamedQuery ANNOTATIONttt ettt ettt e e 209
10.4.2. NamedNativeQuery ANNOtAIONttt ettt ettt et e 209
10.4.3. NamedStoredProcedureQuery ANNOtAtION.uutttt e 210
10.4.4. Annotations for SQL Result Set MapPINgS. vvvttttt ettt et eaes 211
10.5. References to EntityManager and EntityManagerFactoryuuuueiiteeeeennnnnnnnnnnn. 213
10.5.1. PersistenceContext ANNOTATIONottt ettt ettt et e et 213
10.5.2. PersistenceUnit ANNOTATIONttt ettt ettt et e 214
10.6. Annotations for Attribute CONVErter ClaSsSes, 214
11. Metadata for Object/Relational Mappingueettttttt ittt e e ettt 216
11.1. Annotations for Object/Relational Mapping. e 216
11.1.1. ACCESS ANNOTATIONL. « o o oottt ettt ettt et 216
11.1.2. AssociationOverride ANNOTATION.ttt et e 216
11.1.3. AssociationOverrides ANNOTATIONttt ettt ettt et e 219
11.1.4. AttributeOverride ANNOTATIONL e 220
11.1.5. AttributeOverrides ANNOTATIONttt ettt et e e e 223
11.1.6. BaSIC ANNOTATION. . . . o oottt ettt ettt 223
11.1.7. Cacheable ANNOTATIONttt ettt et e 225
11.1.8. CollectionTable ANNOtAIONttt ettt et et et aes 225
11.1.9. Column ANNOTATIONL. . . . oo o ettt e ettt ettt e 228
11.1.10. ConVert ANNOTATIONottt et ettt et ettt ettt et 231
11.1.11. Converts ANNOLAtION e 234
11.1.12. DiscriminatorColumn ANNOLAtIONttt et e et 235
11.1.13. DiscriminatorValue ANNOTAtIONuut ettt ettt et 236
11.1.14. ElementCollection ANNOTATION.ttt ettt ettt et et e 237
11.1.15. Embeddable ANNOtAtiONo e 238
11.1.16. Embedded ANNOTAtION.o e 239

11.1.17. EmbeddedId ANNOtationo vttt ettt et e e e e 240

11.1.18. Enumerated ANNOtAtiON . ..ot v ittt et ettt ettt ettt et e e e 241

11.1.19. EnumeratedValue ANNOtAtiONottt i i e 242
11.1.20. ForeignKey ANNOTATIONottt ettt ettt ettt et e e e 242
11.1.21. GeneratedValue ANNOtAtION.ottt i e 243
11.1.22. Id ANNOTATION oottt ettt e e e 245
11.1.23. IACIass ANNOTATION . ..o u ettt ettt e e e e 246
11.1.24. IndeX ANNOTATION . ..ottt ettt e 246
11.1.25. Inheritance ANNOTAtIONttt et 247
11.1.26. JoINColumn ANNOTATIOIL. . . . oottt ettt ettt ettt et e e e e 248
11.1.27. JoInColumns ANNOLAtION oot 252
11.1.28. JoinTable ANNOTATIONot ettt ettt e 253
11.1.29. Lob ANNOTATION . . .ottt e 255
11.1.30. ManyToMany ANNOTATIOIL oo ettt ettt ettt et e ettt et e e 255
11.1.31. ManyToOne ANNOLAtIONttt ettt ettt e et 258
11.1.32. MapKey ANNOTATION . . . oottt ettt et 260
11.1.33. MapKeyClass ANNOAtION ettt e e e e 261
11.1.34. MapKeyColumn ANNOLAtIONottt e e e 263
11.1.35. MapKeyEnumerated ANNOTATION.ttt ettt et et e 266
11.1.36. MapKeyJoinColumn ANNOTATIONttt ettt ettt ettt et 267
11.1.37. MapKeyJoinColumns ANNOAtIONttt ettt et e e 271
11.1.38. MapKeyTemporal ANNOTATIONttt ettt ettt et e eaes 271
11.1.39. MappedSuperclass ANNOTATIONttt ettt et e 272
11.1.40. MapsId ANNOTAtION. . . . oottt 272
11.1.41. OneToMany ANNOLAtION ettt ettt et e aas 273
11.1.42. OneToOne ANNOTAtIONottt ettt ettt i 275
11.1.43. OrderBy ANNOtAtIONottt e 278
11.1.44. OrderColumn ANNOtAtIONottt ettt 280
11.1.45. PrimaryKeyJoinColumn ANNOTATIONttt ettt ettt ettt eeeaes 282
11.1.46. PrimaryKeyJoinColummns ANNOtAtION.ttt ettt e e eiaes 284
11.1.47. SecondaryTable ANNOtAtION.o 285
11.1.48. SecondaryTables ANNOTATIONottt ettt et e e e 287
11.1.49. SequenceGenerator ANNOTATIONLttt ettt ettt e et 288
11.1.50. SequenceGenerators ANNOTATIONuu ettt ettt ettt et 289
11.1.51. Table ANNOTAtION. . ..ottt e e e 289
11.1.52. TableGenerator ANNOTATIONottt i i 291
11.1.53. TableGenerators ANNOtATIONut ittt et it 293
11.1.54. Temporal ANNOTAtION.ottt et ettt et e e 294
11.1.55. Transient ANNOtAtION.ottt e i et et 294
11.1.56. UniqueConstraint ANNOAtIONttt et e et 295
11.1.57. Version ANNOtAtIONL. uu ittt ettt e ettt et e e 296
11.2. Object/Relational Metadata Used in Schema GeNerationeeeeeeeeeeteeeeeeeeennnnnnnnnnn. 296
11.2.1. Table-level elemMentS.ottt e 297
0 R 1 o) - 297
11.2.0.2. INNETItANICE . . .o oo e 297
11.2.1.3. SecondaryTable e 297

11.2.1.4. ColleCtionTable. . ..ottt e et e et e e e 297

11.2.1.5. JOINTADIEo e 298

O R I o) (=T €13 41> i L) 298
11.2.2. Column-level eleMEeNtS.o e 298
11.2.2.0 COLUIMI. . .ottt ettt e e e et et et e 298
11.2.2.2. MAPKEYCOIUIMILottt e ettt e e e e e e e e e e e e e e e e e 298
11.2.2.3. Enumerated, MapKeyEnumeratedttt e 299
11.2.2.4. Temporal, MapKeyTemporaloooiiiiiiiiiiii e ee e 299
0/ TR 1Y)« 299

I 0 S 0) o 1<) 66 100 299
11.2.2.7. DiscriminatorCOIUMIL.ot e 299
O =3 3 (o) 299
11.2.3. Primary Key MapPings . ..ot ettt e 300
770 7 R o 300
11.2.3.2. EmbeddedIdo 300
11.2.3.3. GeneratedValue e 300
11.2.4. Foreign Key COIUMIN MaAPPINES . . ottt ettt ettt ettt ettt e e eaas 300
11.2.4.1. JOINCOIUIMIL . . . oottt ettt e e e e e e e e e e e e e e et e 300
11.2.4.2. MapKeyJoInCOIUIMNottt e e e e e et e 301
11.2.4.3. PrimaryKeyJoinCOIUMI.o ettt e e e e e e 301
11.2.4.4. FOTRIGNKEY . ..ottt e e e e e e e e e e e e e e e e e e 301
11.2.5. Other EIBIMENTSo e e e 302
11.2.5.1. SEQUENCEGEINMETATOT. . . .ottt ettt ettt ettt ettt e ettt ettt et 302

I 20 1 0 Uc (=) 302
11.2.5.3. UNIqUECONSIIAINT . . .\ttt ettt ettt ettt ettt e et e e e e e e et et ee e 302
11.3. Examples of the Application of Annotations for Object/Relational Mapping.............coooviiin... 302
12. XML Object/Relational Mapping DeSCIIPIOT. v vttt ittt ettt ettt e e e e e e e e e e eeee e 311
12.1. Use of the XML DeSCIIPIOT . . oottt ittt ittt ettt ettt e e e e e 311
12.2. XML OVerriding RULESottt et 311
12.2.1. persistence-unit-defaults Subelementst 311
12,200, SCReIMA . . o e 311
12.2.1.2. CAtAlOE - . e 312
12.2.1.3. delimited-identifiers. 312
12,2004, ACCESS & . e e 312
12.2.1.5. CASCAAR-PEISIST e vttt ettt e e 312
12.2.1.6. eNtitY-LIStEINETSot e 312
12.2.2. Other Subelements of the entity-mappings elementcooiiiiiiiiiiiiiiiiiiiiiiiiinnn 313
12.2.2. 1. PACKAGE . .. e 313
12.2.2.2. SCheIMA . . . 313
12.2.2.3. CAtAl0E . . e 313
12.2. 2.4, ACCESS & . e e 313
12.2.2.5. SEQUEINCE-ZEIETATOY. . . o o vttt ettt ettt et ettt ettt e e ettt ettt 313
12.2.2.6. tADlE-GENETATOT.\ttt e 313
12.2.2.7. NAMEA-QUETY . . .ttt ettt ettt ettt ettt ettt ettt ettt e et e e e e e e e e e 314
12.2.2.8. NAMEA-NATIVE-QUETYottt e ettt ettt e et e e e e e e e et 314
12.2.2.9. named-Stored-proCedUIE-QUETY.ot vttt ettt ettt ettt e et e e e e e e e e e 314

12.2.2.10. SQl-reSult-Set-IAPPINGottt e e 314

12.2.2. 00, @NEIEY. e e 314

12.2.2.12. MaPPEA-SUPETCLASS . .« . ettt ettt ettt ettt ettt ettt ettt e e e e e e e e e 314
12.2.2.13. embeddable 315
0 S o) 473 o <) 315
12.2.3. entity Subelements and AttribDULES 315
12.2.3.1. metadata-CompPletet e 315
12.2.3.2. ACCESS & e 315
12.2.3.3. cacheable. o 315
12234 MAIME. . e 315
12.2.3. 5. 1Al Lo 316
12.2.3.6. secondary-table e 316
12.2.3.7. primary-Key-joIN-COIUMN.ttt e e ee e 316
12.2.3.8. 10-ClaSS « o ottt 316
12.2.3.9. INNETItANCEo 316
12.2.3.10. discriminator-value i e 316
12.2.3.11. discriminator-CoOIUMI i e 316
12.2.3.12. SEQUENCE-ZENETATOT ...ttt ittt ettt ettt et ettt ettt ettt 316
12.2.3.13.table-GENETAtOL.\t 317
12.2.3.14. attribUute-OVeITIAottt e 317
12.2.3.15. @SSOCIAtION-OVEITIAEottt e ettt i 317
12.2.3.16. COMVETL. . .\ttt ettt ettt ettt e 317
12.2.3.17. named-entity-graph e 317
12.2.3.18. NAMEA-QUETY . . .ottt tt ettt ettt ettt ettt ettt ettt ettt e e e e e e e e e e e e 317
12.2.3.19. NaMed-NAtIVE-QUETY o ettt ettt ettt ettt ettt ettt e e e e e e e e e e e e 318
12.2.3.20. named-Stored-pProCeaUIE-QUETY.ttt ttttt ettt ettt et ettt e e e e e e eeeee e 318
12.2.3.21. Sql-reSult-Set-IAPPING vttt e 318
12.2.3.22. exclude-default-liSteners. e 318
12.2.3.23. exclude-superclass-liSteners.ottt e 318
12.2.3.24. @NUY-LISTENEYSottt e e e 318
12.2.3.25. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load. 319
12.2.3.26. @ttTIDULES . . . oot 319
12.2.4. mapped-superclass Subelements and Attributesc i i i i 320
12.2.4.1. metadata-CompPlete e 320
12,242, ACCESS & . e e 320
12.2.4.3. 10-ClaSS o o ot 320
12.2.4.4. exclude-default-listenerso e 320
12.2.4.5. exclude-superclass-liStenersottt e 321
12.2.4.6. eNtitY-LIStEINETSot e 321
12.2.4.7. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load........... 321
12.2.4.8. @ttIDULeSo e 321
12.2.5. embeddable Subelements and Attributes. i 322
12.2.5.1. metadata-CompPlete e 322
12.2.5.2. ACCESS & e 323
12.2.5.3. @ttIDULeSo 323
12.3. XML SCREIMA. . . oo e e 324

Rt DO I I S . . ettt ettt ettt ettt ettt e e e et e it e e e e e e e e 361

Appendix A: ReVISION HISTOTYot e e e e e 362

AL Jakarta PersistenCe 3.2, .o oot 362
W O D 1= o) =T =Y (6 P 364
A.1.2. Deprecations for TEMOVAL.t e e e e 364

A2, Jakarta PersistenCe 3. L. ..o oo 364

A3, Jakarta PersisteniCe 3.0.o 364

A.4. Java Persistence 2.2 (Maintenance Release Draft)coiiiiiiiiiiiiiiii 365

Appendix B: Persistence API INterfaces.ttt e e e e 367

D2 00 O YL T Lo =T AP 367

DS 00 o ¥ Y I o £ o 2 P 387

B.3. ENtityManagerFactory « ov ettt ettt e e e e e e e e e e e e e 389

5 0 S I T 1o Ta[= Y7 - P 395

Bl o CaCRE o ot 398

BB, QUBTY « ottt ettt e e e e e e e e e e e e e e 398

5 0 7 1T [0 T=T P 407

B.8. StOredPrOCeAUMBQUETY v vttt et et et e et ettt e e e e e e e e e e e e e e e e 412

5 0 TR 17 1 P 419

D5 TR U0 =T I P 420

500 S o 1T o 421

5 0 /0 Yo o P 421

BuL S, Entityaraph oot e e e e e e e e e e 428

B, SUDGIaph oottt 429

B.AS. AtEributeNOde. « o oo e 429

D2 0 Oy 1T e o o Y P 430

BT Per S St OMCE ettt e 431

B.18. Persistencelonfigurationttt et et e e e e e 434

B.10. PersistenCeltil. oo vttt e 441

B.20. PersistencelnitUtil ...ttt e 441

Appendix C: Criteria APTINTErfacesottt ettt 445

G CriteriaBUILer . et ettt e e e 445

G, CriteriaDe Lot . ettt ettt e e 472

(O R ol B =Y o T 10T T=T P 473

(O i B oY o NI T PP 478

(O T ol =Y o I 11 <P 478

(O Y L o T 0T T=T P 480

(O 0 Tl o 2 0L PP 483

C.8. ComMONADSEraCtCriterTa o vttt ettt ettt e ettt e e e 484

(O3S R T o oL Uy T Y =Tl ' P 485

(O 00 23 01 =133 o2 P 485

(Ot I - 3 P 487

(O T 1 o1 PP 487

(O TR Y o o Tl o 0LV T=T P 489

(O 1o PP 493

(O 1 TR T 1 8/ <P 494

(O I R I =5 3 o PP 495

(O A I Y 1 =Y S0 =1 PP 495

C.18. LocalDateTimeField 496

C.19. LocalTimeFTeld. oo vttt ettt ettt et ettt e e et e e e 497
(O 0 R T30 Lo 1 1 TP 498
L/ I T P 499
(O 4 L= PP 499
(O o a1 =T g0 E o 2 P 500
(O -l PP 500
(O TR e T 1 1o PP 502
G2, Predicate o vttt e 502
(O 10 P 503
(O - Tl o 2 PP 503
(O TR 1o P 504
.30, SUDQUBTY vttt et e e e e e e e e e e e e e e e e e 504
(O 3 R I 1T L= 1 X =1 P 508
Appendix D: Metamodel APT INTErfaces.o vit ittt et 509
DL Metamodel . ..ttt ettt e e e e 509
D.2. StaticMetamodel. . ..o vttt e 510
D3 AT DULE .« ettt e 510
B T Tl Y7 PP 511
DS BANAED L .« ettt 512
D.6. ColTlectionAtEr DUt . ottt 513
)R 115 Y=Y o o = I P 513
J 2R TR o o Y TP 513
DO, TdentifiaD Ty P . o vttt ettt e e e e e e e e e e e e 513
D10, ListAttribULe oot e 515
B0t O - Ta T T =T I P 515
)0 00 - o of ol 1 T U o P 520
D13, MaPPEASUPE T CLaS S T P « v v vttt ettt e e et e et e e et e e e e e e e e e e e e e e 520
DL, PlUra A DU, o ottt e 521
D15, Set ATt IDULE ottt 521
DLA6. STNGULAT AT DU . o o ettt e e e e e e e 522
00 Y <P 522
Appendix E: Persistence SPIINterfacesottt e e 524
S O O I o I T 3 o 11T 524
S 0T T4) < o - 524
E 3. PersistenCe P rovider oottt e 525
E.4. PersistenceProviderResoLVer. . ettt e e e e e 527
E.5. PersistenceProviderResolverHolderttt i e e i e e 527
E.6. PersistencelnitInto e e 532

S o o 1V L= o1 e T 535

Specification: Jakarta Persistence
Version: 3.2
Status: Final Release

Release: April 10, 2024

Copyright (c) 2019, 2024 Eclipse Foundation.

Eclipse Foundation Specification License - v1.1

By using and/or copying this document, or the Eclipse document from which this statement is linked or incorporated by
reference, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the document, or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

« All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual representation is
permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation AISBL [url] to this license] "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in any
software, documents, or other items or products that you create pursuant to the implementation of the contents of this
document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license,
except anyone may prepare and distribute derivative works and portions of this document in software that
implements the specification, in supporting materials accompanying such software, and in documentation of such
software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works of
this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation AISBL. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT
HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL
WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE
OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be used in advertising or
publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

Chapter 1. Introduction

This document is the specification of the Jakarta API for the management of persistence and object/relational mapping
in the Jakarta EE and Java SE platforms. The technical objective of this work is to provide a standard object/relational
mapping facility for the Java application developer using a Java domain model to manage data held in a relational
database.

» The Jakarta Persistence 3.1 specification is the first release with new features and enhancements after the
specification was moved to the Eclipse Foundation.

» The Jakarta Persistence 3.0 specification was the first release after moving the project to Eclipse Foundation. All
APIs were moved from the package javax.* to the package jakarta.*. Every property name containing javax was
renamed so that javax is replaced with jakarta.

* The Java Persistence 2.2 specification enhanced the API with support for repeating annotations; injection into
attribute converters; support for mapping the LocalDate, LocalTime, LocalDateTime, OffsetTime, and OffsetDateTime types
from java.time; and methods to retrieve the results of Query and TypedQuery as streams.

The Java Persistence 2.1 specification added support for schema generation, type conversion methods, use of entity
graphs in queries and find operations, unsynchronized persistence contexts, stored procedure invocation, and
injection into entity listener classes. It also included enhancements to the query language, the Criteria API, and to
the mapping of native queries.

1.1. Authorship

The Jakarta Persistence Specification incorporates work done over two decades by the EJB 3.0 expert group, the Java
Persistence 2.0, 2.1, and 2.2 expert groups, under the aegis of the Java Community Process, and by the Jakarta
Persistence project at the Eclipse Foundation.

1.2. Document Conventions

Regular serif font is used for information that is prescriptive under this specification.

Italic serif font is used for paragraphs that contain descriptive information, such as notes describing typical use, or
notes clarifying the text with prescriptive specification.

Monospaced font is used for code examples and to specify the BNF of the Jakarta Persistence query language.

This document defines the semantics of a set of Java language annotations. An XML descriptor (as specified in Chapter
12) may be used as an alternative to annotations or to augment or override annotations. The elements of this descriptor
mirror the annotations and have identical semantics to the corresponding annotations. When semantic requirements
are written in terms of annotations, it should be understood that the same semantics apply to the corresponding
elements of the XML descriptor.

Chapter 2. Entities

An entity is a lightweight persistent domain object."! Entities support inheritance, polymorphic associations, and
polymorphic queries.

The primary programming artifact is the entity class. An entity class may make use of auxiliary classes that serve as
helper classes or that are used to represent the state of the entity.

This chapter describes requirements on entity classes and instances.

2.1. The Entity Class

The entity class must be annotated with the Entity annotation or declared as an entity in the XML descriptor.

» The entity class must be a top-level class or a static inner class. An enum, record, or interface may not be designated
as an entity.

* The entity class must have a public or protected constructor with no parameters, which is called by the persistence

(21

provider runtime to instantiate the entity.” The entity class may have additional constructors for use by the

application.

 The entity class must be non-final. Every method and persistent instance variable of the entity class must be non-
final.

An entity might be an abstract class, or it might be a concrete class. An entity may extend a non-entity class, or it may
extend another entity class. A non-entity class may extend an entity class.

The persistent state of an entity is represented by instance variables, which may correspond to JavaBeans properties.
An instance variable may be directly accessed only within the methods of the entity, by the entity instance itself. An
instance variable of an entity must not be directly accessed by a client of the entity. The state of the entity is available to
clients only through the methods of the entity—that is, via accessor (getter/setter) methods, or via other business
methods.

2.2. Persistent Fields and Properties

The persistent state of an entity is accessed by the persistence provider runtime via either:

s property access using JavaBeans-style property accessors, or

* field access, that is, direct access to instance variables.

The instance variables of a class must have private, protected, or package visibility, independent of whether field
access or property access is used. When property access is used, the property accessor methods must be public or
protected.

The type of a persistent field or property of an entity class may be:

 any basic type listed below in Section 2.6, including any Java enum type,
* an entity type or a collection of some entity type, as specified in Section 2.11,
* an embeddable class, as defined in Section 2.7, or

« a collection of a basic type or embeddable type, as specified in Section 2.8.

Object/relational mapping metadata may be specified to customize the object/relational mapping and the loading and
storing of the entity state and relationships, as specified in Chapter 11.

The placement of object/relational mapping annotations depends on whether property access or field access is used:

* When field access is used, mapping annotations must be placed on instance variables, and the persistence provider
runtime accesses instance variables directly. Every non-transient instance variable not annotated with the Transient

annotation is persistent.

« When property-based access is used, mapping annotations must be placed on getter methods"’

, and the persistence
provider runtime accesses persistent state via the property accessor methods. Every property not annotated with

the Transient annotation is persistent.

Mapping annotations must not be applied to fields or properties marked transient or Transient, since those fields and
properties are not persistent.

Whether property access, field access, or a mix of the two options is used by the provider to access the state of a given
entity class or entity hierarchy is determined by the rules defined in Section 2.3.

o Terminology Note: The persistent fields and properties of an entity class are generically referred to in
this document as “attributes” of the class.

Collection-valued persistent fields and properties must be defined in terms of one of the following collection-valued
interfaces, regardless of whether the entity class otherwise adheres to the JavaBeans method conventions noted bhelow,
and of whether field or property access is used: java.util.Collection, java.util.Set, java.util.List ™, java.util.Map.

Use of the generic variants of these collection types is strongly encouraged, for example, Set<Order> is preferred to the
raw type Set.

o Terminology Note: The terms “collection” and “collection-valued” are used in this specification to
denote any of the above types, unless further qualified. In cases where a java.util.Collection type (or
one of its subtypes) is to be distinguished, the type is identified as such. The terms “map” and “map
collection” are used to denote to a collection of type java.util.Map.

A collection implementation type such as HashSet or ArrayList may be used by the application to initialize a collection-
valued field or property before the entity is made persistent. Once the entity becomes managed (or detached),
subsequent access to the collection must be through the interface type.

2.2.1. Persistent Attribute Type

The enumeration jakarta.persistence.metamodel.Attribute.PersistentAttributeType defines a classification of persistent
entity attributes: BASIC for basic attributes, EMBEDDED for embedded attributes, ELEMENT_COLLECTION for element collections,
and MANY_TO_ONE, ONE_TO_ONE, ONE_TO_MANY, and MANY_TO_MANY for associations of the indicated multiplicity. Each persistent
attribute of an entity belongs to exactly one of the listed types.

It is an error for an attribute of an entity to be annotated with mapping annotations indicating conflicting persistent
attribute types. For example, an field may not be annotated @Basic @Embedded, @ManyToOne @ElementCollection, or @neToOne
@ManyToMany. The persistence provider must detect such contradictory combinations of mapping annotations and report

the error.”

2.2.2. Property Access

When property access is used, persistent properties of the entity class must follow the method signature conventions
for JavaBeans read/write properties, as defined by the JavaBeans Introspector class. For every persistent property
property of type T of the entity, there must be a getter method, getProperty, and setter method setProperty. For boolean
properties, isProperty may be used as an alternative name for the getter method."”

For single-valued persistent properties, these method signatures are:

T getProperty()

void setProperty(T t)

For collection-valued persistent properties, the type T in the method signatures above must be one of the collection
interface types listed above in Section 2.2.

In addition to returning and setting the persistent state of the entity instance, a property accessor method may contain
additional logic, for example, logic to perform validation. The persistence provider runtime triggers execution of this
logic when property-based access is used.

Therefore, caution should be exercised in adding business logic to accessor methods when property access is used. The
order in which the persistence provider runtime calls these methods when loading or storing persistent state is not
defined. Logic contained in such methods should therefore not rely on any specific invocation order.

If property access is used and lazy fetching is specified, portable applications should not directly access the entity state
underlying the property methods of managed instances until after it has been fetched by the persistence provider.”

If a persistence context is joined to a transaction, runtime exceptions thrown by property accessor methods cause the
current transaction to be marked for rollback; any exception thrown by such methods when called by the persistence
runtime to load or store persistent state causes the persistence runtime to mark the current transaction for rollback
and to throw a PersistenceException wrapping the application exception.

An entity subclass may override a property accessor method inherited from a superclass. However, portable
applications must not override the object/relational mapping metadata applied to the persistent fields and properties of
entity superclasses.

For example:

public class Customer implements Serializable {
private Long id;
private String name;
private Address address;
private Collection<Order> orders = new HashSet();
private Set<PhoneNumber> phones = new HashSet();

// No-arg constructor
public Customer() {}

// property access is used
public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

public Collection<Order> getOrders() {
return orders;

}

public void setOrders(Collection<Order> orders) {
this.orders = orders;

}

public Set<PhoneNumber> getPhones() {
return phones;

}

public void setPhones(Set<PhoneNumber> phones) {
this.phones = phones;

}

// Business method to add a phone number to the customer
public void addPhone(PhoneNumber phone) {
this.getPhones().add(phone);

// Update the phone entity instance to refer to this customer
phone.addCustomer (this);

2.3. Access Type

An access type determines how the persistence provider runtime reads and writes the persistent state of an entity from
and to an instance of the entity class, as specified above in Section 2.2. AccessType enumerates the two possibilities:

public enum AccessType {
FIELD,
PROPERTY

The access type for a persistent attribute depends on the placement of object/relational mapping annotations in the
entity class, and may be explicitly overridden via use of the Access annotation defined in Section 11.1.1.

2.3.1. Default Access Type

By default, a single access type (FIELD or PROPERTY) is inferred for an entity hierarchy. The default access type of an entity
hierarchy is determined by the placement of mapping annotations on the attributes of the entity classes and mapped
superclasses of the entity hierarchy which do not explicitly specify an access type.

« If mapping annotations are placed on instance variables, FIELD access is inferred.

« If mapping annotations are placed on getter methods, PROPERTY access is inferred.
An access type may be explicitly specified by means of the Access annotation', as described below in Section 2.3.2.

Every class in an entity hierarchy whose access type is defaulted in this way must be consistent in its placement of
mapping annotations on either fields or properties, such that a single, consistent default access type applies within the
hierarchy. Any embeddable class used by an entity within the hierarchy has the same access type as the default access
type of the hierarchy unless the Access annotation is specified, as defined below.

It is an error if a default access type cannot be determined and an access type is not explicitly specified by a class-level
Access annotation or the XML descriptor. The behavior of applications which mix the placement of mapping
annotations on fields and properties within an entity hierarchy without explicitly specifying the class-level Access
annotation is undefined."

2.3.2. Explicit Access Type

The access type of an individual entity class, mapped superclass, or embeddable class may be specified for that class,
independent of the default for the entity hierarchy to which it belongs, by annotating the class with the Access
annotation.

* When Access(FIELD) is applied to an entity class, mapped superclass, or embeddable class, mapping annotations may
be placed on the instance variables of that class, and the persistence provider runtime accesses persistent state via
direct access to the instance variables declared by the class. Every non-transient instance variable not annotated
with the Transient annotation is persistent.

* When Access(PROPERTY) is applied to an entity class, mapped superclass, or embeddable class, mapping annotations
may be placed on the properties of that class, and the persistence provider runtime accesses persistent state via the
properties declared by that class. Every property not annotated with the Transient annotation is persistent.

The explicit access type may be overridden at the attribute level. That is, a class which explicitly specifies an access
type using the Access annotation may also have fields or properties annotated Access, and so the class may have a mix of
access types.

* When Access(FIELD) is specified at the class level, an individual attribute within the class may be selectively
designated for property access by annotating a property getter Access(PROPERTY). Mapping annotations for this
attribute must be placed on the getter. If a mapping annotation is placed on a property getter which is not annotated
Access(PROPERTY), the behavior is undefined.

* When Access(PROPERTY) is specified at the class level, an individual attribute within the class may be selectively
designated for field access by annotating an instance variable Access(FIELD). Mapping annotations for this attribute
must be placed on the field. If a mapping annotation is placed on a field which is not annotated Access(FIELD), the
behavior is undefined.

It is permitted (but redundant) to place Access(FIELD) on a field whose class has field access or Access(PROPERTY) on a
property whose class has property access. On the other hand, the behavior is undefined if:

* Access(PROPERTY) annotates a field,
* Access(FIELD) annotates a property getter, or

¢ the Access annotation occurs on a property setter.
Portable application should avoid such misplaced @Access annotations.

When access types are combined within a class, the Transient annotation should be used to avoid duplicate persistent
mappings. For example:

(PROPERTY)
public class Customer {
private Long id;

(FIELD) // use field access for name
private String name;

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
b

// suppress duplicated name attribute
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

The Access annotation does not affect the access type of other entity classes or mapped superclasses in the entity
hierarchy. In particular, persistent state inherited from a superclass is always accessed according to the access type of
that superclass.

2.3.3. Access Type of an Embeddable Class

The access type of an embeddable class is determined by the access type of the entity class, mapped superclass, or
embeddable class in which it is embedded (including as a member of an element collection) independent of whether
the access type of the containing class is explicitly specified or defaulted. A different access type for an embeddable
class can be specified for that embeddable class by means of the Access annotation as described above in Section 2.3.2.

2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclasses

Care must be taken when implementing an embeddable class or mapped superclass which is used both in a context of
field access and in a context of property access, and whose access type is not explicitly specified by means of the Access
annotation or XML mapping file.

Such a class should be implemented so that the number, names, and types of its persistent attributes are independent
of the access type in use. The behavior of an embeddable class or mapped superclass whose attributes are not
independent of access type is undefined with regard to use with the metamodel API if the class occurs in contexts of
differing access types within the same persistence unit.

2.4. Primary Keys and Entity Identity

Every entity must have a primary key. The value of its primary key uniquely identifies an entity instance within a
persistence context and to operations of the EntityManager, as described in Chapter 3.

The primary key must be declared by:

« the entity class that is the root of the entity hierarchy, or

« a mapped superclass that is a (direct or indirect) superclass of all entity classes in the entity hierarchy.
A primary key must be defined exactly once in each entity hierarchy.

* A primary key comprises one or more fields or properties (“attributes”) of the entity class.

* A simple primary key is a single persistent field or property of the entity class whose type is one of the legal simple
primary key types listed below. The Id annotation defined in Section 11.1.22 or id XML element must be used to
identify the simple primary key.

* A composite primary key must correspond to either a single persistent field or property, or to a set of fields or
properties, as described below."” A primary key class must be defined to represent the composite primary key.

o If the composite primary key corresponds to a single field or property of the entity, the EmbeddedId annotation
defined by Section 11.1.17 identifies the primary key, and the type of the annotated field or property is the
primary key class.

o Otherwise, when the composite primary key corresponds to multiple fields or properties, the Id annotation
defined by Section 11.1.22 identifies the fields and properties which comprise the composite key, and the IdClass
annotation defined by Section 11.1.23 must specify the primary key class.

A simple primary key or field or property belonging to a composite primary key should have one of the following basic
types:

« any Java primitive type, or java.lang wrapper for a primitive type, "

* java.lang.String,
* java.util.UUID,
* java.time.lLocalDate, java.util.Date, or java.sql.Date,

* BigDecimal or BigInteger from java.math.

If a primary key field or property has type java.util.Date, the temporal type must be explicitly specified as DATE using
the Temporal annotation defined by Section 11.1.54, or by equivalent XML.

If the primary key is a composite primary key derived from the primary key of another entity, the primary key may
contain an attribute whose type is that of the primary key of the referenced entity, as specified below in Section 2.4.2.

An entity with a primary key involving any type other than the types listed above is not portable. If the primary key is
generated by the persistence provider, as defined by Section 11.1.21, and its type is not long, int, java.util.UUID,
java.lang.String, java.lang.Long, or java.lang.Integer, the entity is not portable.

The application must not change the value of the primary key of an entity instance after the instance is made
persistent™”. If the application does change the value of a primary key of an entity instance after the entity instance is
made persistent, the behavior is undefined."

2.4.1. Composite primary keys

The following rules apply to composite primary keys:

» The primary key class may be a non-abstract regular Java class with a public or protected constructor with no
parameters. Alternatively, the primary key class may be any Java record type, in which case it need not have a
constructor with no parameters.

» The access type (FIELD or PROPERTY) of a primary key class is determined by the access type of the entity for which it is
the primary key, unless the primary key is an embedded id and an explicit access type is specified using the Access
annotation, as defined in Section 2.3.2.

o If property-based access is used, the properties of the primary key class must be public or protected.

* The primary key class must define equals and hashCode methods. The semantics of value equality for these methods
must be consistent with the database equality for the database types to which the key is mapped.

* A composite primary key must either be represented and mapped as an embeddable class (see Section 11.1.17) or it
must be represented as an id class and mapped to multiple fields or properties of the entity class (see Section
11.1.23).

o If the composite primary key class is represented as an id class, the names of primary key fields or properties of the
primary key class and those of the entity class to which the id class is mapped must correspond and their types must
be the same.

10

* A primary key which corresponds to a derived identity must conform to the rules specified below in Section 2.4.2.

2.4.2. Primary Keys Corresponding to Derived Identities

The identity of an entity is said to be partially derived from the identity of a second entity when the child or dependent
first entity is the owner of a many-to-one or one-to-one relationship which targets the parent second entity and the
foreign key referencing the parent entity forms part of the primary key of the dependent entity.

A derived identity might be represented as a simple primary key or as a composite primary key, as described in Section
2.4.2.1 below. The dependent entity class has a composite primary key if

« it declares one or more primary key attributes in addition to those corresponding to the primary key of the parent,
or

o the parent itself has a composite primary key

and then an embedded id or id class must be used to represent the primary key of the dependent entity. In the case that
the parent has a composite key, it is not required that parent entity and dependent entity both use embedded ids, nor
that both use id classes.

A ManyToOne or OneToOne relationship which maps a primary key column or columns may be declared using either:

¢ the Id annotation, when no other Id or EmbeddedId attribute maps the same primary key column or columns, or

* the MapsId annotation, if some other attribute or attributes annotated Id or EmbeddedId also map the primary key
column or columns.

If a ManyToOne or OneToOne relationship declared by a dependent entity is annotated Id or MapsId, an instance of the entity
cannot be made persistent until the relationship has been assigned a reference to an instance of the parent entity, since

the identity of the dependent entity declaring the relationship is derived from the referenced parent entity. "*

A dependent entity may have more than one parent entity.

2.4.2.1. Specification of Derived Identities

If a dependent entity uses an id class to represent its primary key, one of the two following rules must be observed:

« The names and types of the attributes of the id class and the Id attributes of the dependent entity class must
correspond as follows:

o The Id attribute of the dependent entity class and the corresponding attribute in the id class must have the same
name.

o If an Id attribute of the dependent entity class is of basic type, the corresponding attribute in the id class must
have the same type.

o If an Id attribute of the entity is a ManyToOne or OneToOne relationship to the parent entity, the corresponding
attribute in the id class must be of the same Java type as the id class or embedded id of the parent entity (if the
parent entity has a composite primary key) or the type of the Id attribute of the parent entity (if the parent entity
has a simple primary key).

 Alternatively, if the dependent entity declares a single primary key attribute, that is, a OneToOne relationship attribute
annotated Id, then the id class specified by the dependent entity must be the same as the primary key class of the
parent entity.

If a dependent entity uses an embedded id to represent its primary key, the relationship attribute which targets the
parent entity must be annotated MapsId.

o If the embedded id of the dependent entity is of the same Java type as the primary key of the parent entity, then the

11

relationship attribute maps both the relationship to the parent and the primary key of the dependent entity, the
relationship attribute must be a OneToOne association, and the MapsId annotation must leave the value element
unspecified. "

* Otherwise, the value element of the MapsId annotation must specify the name of the attribute within the embedded id
to which the relationship attribute corresponds and this attribute of the embedded id must be of the same type as
the primary key of the parent entity.

An attribute of an embedded id which corresponds to a relationship targeting a parent entity is treated by the provider
as “read only”—that is, any direct mutation of the attribute is not propagated to the database.

If a dependent entity has a single primary key attribute annotated Id, and the primary key of the parent entity is a
simple primary key, then the primary key of the dependent entity is a simple primary key of the same Java type as that
of the parent entity, the relationship attribute must be a OneToOne association targeting the parent entity, and either:

1. the primary key attribute annotated Id is the relationship attribute itself, or

2. the primary key attribute annotated Id has the same type as the simple primary key of the parent entity, the
relationship attribute is annotated MapsId, and the value element of the MapsId annotation is left unspecified.

Neither EmbeddedId nor IdClass is specified for the dependent entity.

2.4.2.2. Mapping of Derived Identities

A dependent entity has derived primary key attributes, and might also have additional primary key attributes which
are not derived from any parent entity.

* Any primary key attribute of a dependent entity which is derived from the identity of a parent entity is mapped by
annotations of the corresponding ManyToOne or OneToOne relationship attribute. The default mapping for this
relationship is specified in Section 2.12. The default mapping may be overridden by annotating the relationship
attribute with the JoinColumn or JoinColumns annotation.

o If the dependent entity uses an id class, the Column annotation may be used to override the default mapping of Id
attributes which are not derived from any parent entity.

o If the dependent entity uses an embedded id to represent its primary key, the AttributeOverride annotation applied
to the EmbeddedId attribute may be used to override the default mapping of embedded id attributes which are not
derived from any parent entity.

2.4.2.3. Examples of Derived Identities

The following examples illustrate the rules specified above.
Example 1:
The parent entity has a simple primary key:
public class Employee {
long empld;
String empName;

/] ...

Case (a): The dependent entity uses IdClass to represent a composite key:

public class DependentId {
String name; // matches name of @Id attribute

12

long emp; // matches name of @Id attribute and type of Employee PK
}

EEntity

@ldClass(DependentId.class)

public class Dependent {
@Id String name;

// id attribute mapped by join column default
@Id @ManyToOne
Employee emp;

/] .

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.empName = 'Sam'

Case(b): The dependent entity uses EmbeddedId to represent a composite key:

©Embeddable
public class DependentId {

String name;

long empPK; // corresponds to PK type of Employee
}

@Entity
public class Dependent {
@EmbeddedId DependentId id;

// id attribute mapped by join column default
@MapsId("empPK") // maps empPK attribute of embedded id
@ManyToOne

Employee emp;

/] ...

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.empName = 'Sam’

Example 2:

The parent entity uses IdClass:

public class Employeeld {
String firstName;
String lastName;

/] ..
}

EEntity

@IdClass(Employeeld.class)

public class Employee {
@Id String firstName
@Id String lastName

13

/1 ...

Case (a): The dependent entity uses IdClass:

public class DependentId {

String name; // matches name of attribute

Employeeld emp; //matches name of attribute and type of Employee PK
}

@Entity
@ldClass(DependentId.class)
public class Dependent {
@Id
String name;

@Id

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="T1astName")

b

@ManyToOne
Employee emp;

Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' AND d.emp.firstName = 'Sam'

Case (b): The dependent entity uses EmbeddedId. The type of the empPK attribute is the same as that of the primary key of
Employee. The Employeeld class needs to be annotated Embeddable or denoted as an embeddable class in the XML
descriptor.

@Embeddable

public class DependentId {
String name;
Employeeld empPK;

}
@Entity
public class Dependent {
@EmbeddedId
DependentId id;
@MapsId("empPK")
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")
9]
@ManyToOne
Employee emp;
/] ...
}
Sample query:

14

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.emp.firstName = 'Sam'

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 3:

The parent entity uses EmbeddedId:

@Embeddable

public class Employeeld {
String firstName;
String lastName;

/] ...

}

@Entity

public class Employee {
@EmbeddedId
Employeeld empld;
/] ...

}

Case (a): The dependent entity uses IdClass:

public class DependentId {

String name; // matches name of @Id attribute

Employeeld emp; // matches name of @Id attribute and type of embedded id of Employee
}

@Entity

@TdClass(DependentId.class)

public class Dependent {
@Id
@Column(name="dep_name") // default column name is overridden
String name;

@eId

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="T1astName")

)

@ManyToOne Employee
emp;
Sample query:

SELECT d
FROM Dependent d
WHERE d.name = 'Joe' and d.emp.empId.firstName = 'Sam’

Case (b): The dependent entity uses EmbeddedId:

15

@Embeddable
public class DependentId {

String name;

Employeeld empPK; // corresponds to PK type of Employee
}

EEntity

public class Dependent {
// default column name for "name" attribute is overridden
@AttributeOverride(name="name", column=@Column(name="dep_name"))
@EmbeddedId DependentId id;

@MapsId("empPK")

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="T1astName")

})
@ManyToOne
Employee emp;

/] ...

Sample query:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' and d.emp.empIld.firstName = 'Sam’

Note that the following alternative query will yield the same result:

SELECT d
FROM Dependent d
WHERE d.id.name = 'Joe' AND d.id.empPK.firstName = 'Sam'

Example 4:

The parent entity has a simple primary key:

@Entity

public class Person {
@Id
String ssn;

VA

Case (a): The dependent entity has a single primary key attribute which is mapped by the relationship attribute. The
primary key of MedicalHistory is of type String.

@Entity
public class MedicalHistory {
// default join column name is overridden
eId
@0neToOne
@JoinColumn(name="FK")
Person patient;

/] .

16

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.ssn = '123-45-6789'

Case (b): The dependent entity has a single primary key attribute corresponding to the relationship attribute. The
primary key attribute is of the same basic type as the primary key of the parent entity. The MapsId annotation applied to

the relationship attribute indicates that the primary key is mapped by the relationship attribute."

@Entity
public class MedicalHistory {
@Id
String id; // overriding not allowed

/] ...

// default join column name is overridden
@MapsId

@JoinColumn(name="FK")

@0neToOne

Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m WHERE m.patient.ssn = '123-45-6789'

Example 5:

The parent entity uses IdClass. The dependent’s primary key class is of same type as that of the parent entity.

public class Personld {
String firstName;
String lastName;

}

@Entity
@TdClass(PersonId.class)
public class Person {
@Id
String firstName;

@Id
String lastName;

VS

Case (a): The dependent entity uses IdClass:

@Entity
@ldClass(Personld.class)
public class MedicalHistory {
@Id
@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="T1astName")

1))
17

@0neToOne
Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles'

Case (b): The dependent entity uses the EmbeddedId and MapsId annotations. The PersonId class needs to be annotated
Embeddable or denoted as an embeddable class in the XML descriptor.

@Entity

public class MedicalHistory {
// all attributes map to relationship:
AttributeOverride not allowed

@EmbeddedId
PersonId id;

/] ..

@MapsId

@JoinColumns({
@JoinColumn(name="FK1", referencedColumnName="firstName"),
@JoinColumn(name="FK2", referencedColumnName="1astName")

1))

©0neToOne Person patient;

/] ...

Sample query:

SELECT m
FROM MedicalHistory m
WHERE m.patient.firstName = 'Charles'

Note that the following alternative query will yield the same result:

SELECT m
FROM MedicalHistory m
WHERE m.id.firstName = 'Charles’

Example 6:

The parent entity uses EmbeddedId. The dependent’s primary key is of the same type as that of the parent.

@Embeddable

public class PersonId {
String firstName;
String lastName;

}

@Entity
public class Person {
@EmbeddedId PersonId id;

18

VS

Case (a): The dependent class uses IdClass:

(Personld.class)
public class MedicalHistory {

{
(name="FK1", referencedColumnName="firstName"),
(name="FK2", referencedColumnName="1astName")

)

Person patient;

/] ...

Case (b): The dependent class uses EmbeddedId:

public class MedicalHistory {
// All attributes are mapped by the relationship
// AttributeOverride is not allowed
PersonId id;

/] ...

({
(name="FK1", referencedColumnName="f1irstName"),
(name="FK2", referencedColumnName="1astName")

)

Person patient;

/1 ...

2.5. Entity Versions

An entity might have a version, a persistent field or property used by the persistence provider to perform optimistic
locking, as specified in Section 3.5.2. The version field or property holds a version number or timestamp identifying the
revision of the entity data held by an entity class instance. In the course of performing lifecycle operations involving
the entity instance, the persistence provider gets and sets the version field or property of the entity instance to
determine or modify its version number or timestamp. The Version annotation defined in Section 11.1.57 or version
XML element must be used to explicitly identify the version field or property of an entity.

An entity class may access the state of its version field or property or export a method which allows other user-written
code to access the version, but user-written code must not directly modify the value of the version field or property of
an entity instance after the entity is made persistent. """ With the exception noted in Section 4.11, only the persistence
provider is permitted to set or update the entity version. If the application does directly modify the value of the version
field or property of an entity instance after it is made persistent, the behavior is undefined.

The version must be of one of the following basic types:

* int, Integer, short, Short, long, Long, or

19

* java.time.LocalDateTime, java.time.Instant, or java.sql.Timestamp.
A portable application must not declare a version field or property with any other type.

An entity class should have at most one version. A portable application must not define an entity class having more
than one version field or property.

The version should be declared by the root entity class in an entity class hierarchy, or by one of its mapped
superclasses. A portable application must not declare a version field or property in a subclass of the root class of an
entity class hierarchy.

2.6. Basic Types

The following Java types are considered basic types:

¢ any Java primitive type, or java.lang wrapper class for a primitive type,

* java.lang.String,

* java.util.UUID,

 BigInteger or BigDecimal from java.math,

* LocalDate, LocalTime, LocalDateTime, OffsetTime, OffsetDateTime, Instant, or Year from java.time,
* Date or Calendar ™ from java.util ol

* Date, Time, or Timestamp from java.sql %,

e byte[] or Byte[], char[] or Character[] [21],
* any Java enum type,

* any other type which implements java.io.Serializable.

Persistence for basic types is defined in Section 11.1.6 and Section 11.1.18.

2.7. Embeddable Classes

An entity may use other fine-grained classes to represent entity state. Instances of these classes, unlike entity instances,
do not have persistent identity of their own. Instead, they exist only as part of the state of the entity to which they
belong. An entity may have collections of embeddables as well as single-valued embeddable attributes. Embeddables
may also be used as map keys and map values. Embedded objects belong strictly to their owning entity, and are not
sharable across persistent entities. Attempting to share an embedded object across entities has undefined semantics.

Embeddable classes must be annotated as Embeddable or denoted in the XML descriptor as such. The access type for an
embedded object is determined as described in Section 2.3.

An embeddable class may be a regular Java class which adheres to the requirements specified in Section 2.1 for
entities, with the exception that an embeddable class is not annotated as Entity, and an embeddable class may not be
abstract.

Alternatively, an embeddable class may be any Java record type.
An embeddable class may be used to represent the state of another embeddable class.

An embeddable class (including an embeddable class within another embeddable class) may contain a collection of a

basic type or other embeddable class.*”

An embeddable class may contain a relationship to an entity or collection of entities. Since instances of embeddable
classes themselves have no persistent identity, the relationship from the referenced entity is to the entity that contains
the embeddable instance(s) and not to the embeddable itself.” An embeddable class that is used as an embedded id or

20

as a map key must not contain such a relationship.

Additional requirements and restrictions on embeddable classes are described in Section 2.8.

2.8. Collections of Embeddable Classes and Basic Types

A persistent field or property of an entity or embeddable class may correspond to a collection of a basic type or
embeddable class (“element collection”). Such a collection, when specified as such by the ElementCollection annotation,
is mapped by means of a collection table, as defined in Section 11.1.8. If the ElementCollection annotation (or XML
equivalent) is not specified for the collection-valued field or property, the rules of Section 2.10 apply.

An embeddable class (including an embeddable class within another embeddable class) that is contained within an
element collection must not contain an element collection, nor may it contain a relationship to an entity other than a
many-to-one or one-to-one relationship. The embeddable class must be on the owning side of such a relationship and
the relationship must be mapped by a foreign key mapping. (See Section 2.11)

2.9. Map Collections

Collections of elements and entity relationships can be represented as java.util.Map collections.
The map key and the map value independently can each be a basic type, an embeddable class, or an entity.

The ElementCollection, OneToMany, and ManyToMany annotations are used to specify the map as an element collection or
entity relationship as follows: when the map value is a basic type or embeddable class, the ElementCollection annotation
is used; when the map value is an entity, the OneToMany or ManyToMany annotation is used.

Bidirectional relationships represented as java.util.Map collections support the use of the Map datatype on one side of
the relationship only.

2.9.1. Map Keys

If the map key type is a basic type, the MapKeyColumn annotation can be used to specify the column mapping for the map
key. If the MapKeyColumn annotation is not specified, the default values of the MapKeyColumn annotation apply as described
in Section 11.1.34.

If the map key type is an embeddable class, the mappings for the map key columns are defaulted according to the
default column mappings for the embeddable class. (See Section 11.1.9). The AttributeOverride and AttributeOverrides
annotations can be used to override these mappings, as described in Section 11.1.4 and Section 11.1.5. If an embeddable
class is used as a map key, the embeddable class must implement the hashCode and equals methods consistently with the

database columns to which the embeddable is mapped™".

If the map key type is an entity, the MapKeyJoinColumn and MapKeyJoinColumns annotations are used to specify the column
mappings for the map key. If the primary key of the referenced entity is a simple primary key and the MapKeyJoinColumn
annotation is not specified, the default values of the MapKeyJoinColumn annotation apply as described in Section 11.1.36.

If Java generic types are not used in the declaration of a relationship attribute of type java.util.Map, the MapKeyClass
annotation must be used to specify the type of the key of the map.

The MapKey annotation is used to specify the special case where the map key is itself the primary key or a persistent field
or property of the entity that is the value of the map. The MapKeyClass annotation is not used when MapKey is specified.

21

2.9.2. Map Values

When the value type of the map is a basic type or an embeddable class, a collection table is used to map the map. If Java
generic types are not used, the targetClass element of the ElementCollection annotation must be used to specify the value
type for the map. The default column mappings for the map value are derived according to the default mapping rules
for the CollectionTable annotation defined in Section 11.1.8. The Column annotation is used to override these defaults for
a map value of basic type. The AttributeOverride(s) and AssociationOverride(s) annotations are used to override the
mappings for a map value that is an embeddable class.

When the value type of the map is an entity, a join table is used to map the map for a many-to-many relationship or, by
default, for a one-to-many unidirectional relationship. If the relationship is a bidirectional one-to-many/many-to-one
relationship, by default the map is mapped in the table of the entity that is the value of the map. If Java generic types
are not used, the targetEntity element of the OneToMany or ManyToMany annotation must be used to specify the value type
for the map. Default mappings are described in Section 2.12.

2.10. Mapping Defaults for Non-Relationship Fields or Properties

If a persistent field or property other than a relationship property is not annotated with one of the mapping
annotations defined in Chapter 11 (and no equivalent mapping information is specified in any XML descriptor), the
following default mapping rules are applied in order:

o If the type of the field or property is a class annotated with the Embeddable annotation, the field or property is
mapped as if it were annotated with the Embedded annotation. See Section 11.1.15 and Section 11.1.16.

o Otherwise, if the type of the field or property is one of the one of the basic types listed in Section 2.6, it is mapped in
the same way as if it were annotated as Basic. See Section 11.1.6, Section 11.1.18, Section 11.1.29, and Section 11.1.54.

It is an error if no annotation is present and neither of the above rules apply.

2.11. Entity Relationships

Relationships among entities may be one-to-one, one-to-many, many-to-one, or many-to-many. Relationships are
polymorphic.

If there is an association between two entities, one of the following relationship modeling annotations must be applied
to the corresponding persistent property or field of the referencing entity: OneToOne, OneToMany, ManyToOne, ManyToMany. For
associations that do not specify the target type (e.g., where Java generic types are not used for collections), it is
necessary to specify the entity that is the target of the relationship.”” Equivalent XML elements may be used as an
alternative to these mapping annotations.

These annotations mirror common practice in relational database schema modeling. The use of the relationship modeling
annotations allows the object/relationship mapping of associations to the relational database schema to be fully defaulted,
to provide an ease-of-development facility. This is described in Section 2.12.

Relationships may be bidirectional or unidirectional. A bidirectional relationship has both an owning side and an
inverse (non-owning) side. A unidirectional relationship has only an owning side. The owning side of a relationship
determines the updates to the relationship in the database, as described in Section 3.3.4.

The following rules apply to bidirectional relationships:

The inverse side of a bidirectional relationship must refer to its owning side by use of the mappedBy element of the
OneToOne, OneToMany, or ManyToMany annotation. The mappedBy element designates the property or field in the entity that is
the owner of the relationship.

22

* The many side of one-to-many / many-to-one bidirectional relationships must be the owning side, hence the mappedBy
element cannot be specified on the ManyToOne annotation.

* For one-to-one bidirectional relationships, the owning side corresponds to the side that contains the corresponding
foreign key.

* For many-to-many bidirectional relationships either side may be the owning side.

The relationship modeling annotation constrains the use of the cascade=REMOVE specification. The cascade=REMOVE
specification should only be applied to associations that are specified as OneToOne or OneToMany. Applications that apply
cascade=REMOVE to other associations are not portable.

Associations that are specified as OneToOne or OneToMany support use of the orphanRemoval option. The following behaviors
apply when orphanRemoval is in effect:

« If an entity that is the target of the relationship is removed from the relationship (by setting the relationship to null
or removing the entity from the relationship collection), the remove operation will be applied to the entity being
orphaned. The remove operation is applied at the time of the flush operation. The orphanRemoval functionality is
intended for entities that are privately “owned” by their parent entity. Portable applications must otherwise not
depend upon a specific order of removal, and must not reassign an entity that has been orphaned to another
relationship or otherwise attempt to persist it. If the entity being orphaned is a detached, new, or removed entity,
the semantics of orphanRemoval do not apply.

« If the remove operation is applied to a managed source entity, the remove operation will be cascaded to the
relationship target in accordance with the rules of Section 3.3.3, (and hence it is not necessary to specify

cascade=REMOVE for the relationship)™®.

Section 2.12, defines relationship mapping defaults for entity relationships. Additional mapping annotations (e.g.,
column and table mapping annotations) may be specified to override or further refine the default mappings and
mapping strategies described in Section 2.12.

In addition, this specification also requires support for the following alternative mapping strategies:

« The mapping of unidirectional one-to-many relationships by means of foreign key mappings. The JoinColumn
annotation or corresponding XML element must be used to specify such non-default mappings. See Section 11.1.26.

* The mapping of unidirectional and bidirectional one-to-one relationships, bidirectional many-to-one/one-to-many
relationships, and unidirectional many-to-one relationships by means of join table mappings. The JoinTable
annotation or corresponding XML element must be used to specify such non-default mappings. See Section 11.1.28.

Such mapping annotations must be specified on the owning side of the relationship. Any overriding of mapping
defaults must be consistent with the relationship modeling annotation that is specified. For example, if a many-to-one
relationship mapping is specified, it is not permitted to specify a unique key constraint on the foreign key for the
relationship.

The persistence provider handles the object/relational mapping of the relationships, including their loading and storing
to the database as specified in the metadata of the entity class, and the referential integrity of the relationships as
specified in the database (e.g., by foreign key constraints).

Note that it is the application that bears responsibility for maintaining the consistency of runtime
relationships—for example, for insuring that the “one” and the “many” sides of a bidirectional
relationship are consistent with one another when the application updates the relationship at runtime.

If there are no associated entities for a multi-valued relationship of an entity fetched from the database, the persistence
provider is responsible for returning an empty collection as the value of the relationship.

23

2.12. Relationship Mapping Defaults

This section defines the mapping defaults that apply to the use of the OneToOne, OneToMany, ManyToOne, and ManyToMany
relationship modeling annotations. The same mapping defaults apply when the XML descriptor is used to denote the
relationship cardinalities.

2.12.1. Bidirectional OneToOne Relationships

Assuming that:

* Entity A references a single instance of Entity B.
 Entity B references a single instance of Entity A.

* Entity A is specified as the owner of the relationship.
The following mapping defaults apply:

* Entity A is mapped to a table named A.

« Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the concatenation of the
following: the name of the relationship property or field of entity A; " _"; the name of the primary key column in
table B. The foreign key column has the same type as the primary key of table B and there is a unique key constraint
on it.

Example:

public class Employee {
private Cubicle assignedCubicle;

public Cubicle getAssignedCubicle() {
return assignedCubicle;

}

public void setAssignedCubicle(Cubicle cubicle) {
this.assignedCubicle = cubicle;

}

/] ...

public class Cubicle {
private Employee residentEmployee;

(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {

return residentEmployee;

}

public void setResidentEmployee(Employee employee) {
this.residentEmployee = employee;

}

/] ...

In this example:

24

 Entity Employee references a single instance of Entity Cubicle.
* Entity Cubicle references a single instance of Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

* Entity Employee is mapped to a table named EMPLOYEE.
 Entity Cubicle is mapped to a table named CUBICLE.

o Table EMPLOYEE contains a foreign key to table CUBICLE. The foreign key column is named ASSIGNEDCUBICLE_<PK of
CUBICLE>, where <PK of CUBICLE> denotes the name of the primary key column of table CUBICLE. The foreign key
column has the same type as the primary key of CUBICLE, and there is a unique key constraint on it.

2.12.2. Bidirectional ManyToOne / OneToMany Relationships

Assuming that:

* Entity A references a single instance of Entity B.
« Entity B references a collection of Entity A””.

* Entity A must be the owner of the relationship.
The following mapping defaults apply:

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

 Table A contains a foreign key to table B. The foreign key column name is formed as the concatenation of the
following: the name of the relationship property or field of entity A; " _"; the name of the primary key column in
table B. The foreign key column has the same type as the primary key of table B.

Example:

public class Employee {
private Department department;

public Department getDepartment() {
return department;

}

public void setDepartment(Department department) {
this.department = department;

}

/] ...

public class Department {
private Collection<Employee> employees = new HashSet();

(mappedBy="department")
public Collection<Employee> getEmployees() {
return employees;

}

public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

/] ...

In this example:

* Entity Employee references a single instance of Entity Department.
 Entity Department references a collection of Entity Employee.

 Entity Employee is the owner of the relationship.
The following mapping defaults apply:

* Entity Employee is mapped to a table named EMPLOYEE.
 Entity Department is mapped to a table named DEPARTMENT.

 Table EMPLOYEE contains a foreign key to table DEPARTMENT. The foreign key column is named DEPARTMENT_<PK of
DEPARTMENT>, where <PK of DEPARTMENT> denotes the name of the primary key column of table DEPARTMENT. The foreign
key column has the same type as the primary key of DEPARTMENT.

2.12.3. Unidirectional Single-Valued Relationships

Assuming that:

« Entity A references a single instance of Entity B.

* Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional single-valued relationship modeling case can be specified as either a unidirectional OneToOne or as a
unidirectional ManyToOne relationship.

2.12.3.1. Unidirectional OneToOne Relationships

The following mapping defaults apply:

* Entity A is mapped to a table named A.
* Entity B is mapped to a table named B.

» Table A contains a foreign key to table B. The foreign key column name is formed as the concatenation of the
following: the name of the relationship property or field of entity A; " _"; the name of the primary key column in
table B. The foreign key column has the same type as the primary key of table B and there is a unique key constraint
on it.

Example:

public class Employee {
private TravelProfile profile;

public TravelProfile getProfile() {
return profile;

ks

public void setProfile(TravelProfile profile) {
this.profile = profile;

I

/] ...

26

public class TravelProfile {
/] ...
}

In this example:

 Entity Employee references a single instance of Entity TravelProfile.
* Entity TravelProfile does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

* Entity Employee is mapped to a table named EMPLOYEE.
o Entity TravelProfile is mapped to a table named TRAVELPROFILE.

» Table EMPLOYEE contains a foreign key to table TRAVELPROFILE. The foreign key column is named PROFILE_<PK of
TRAVELPROFILE>, where <PK of TRAVELPROFILE> denotes the name of the primary key column of table TRAVELPROFILE. The
foreign key column has the same type as the primary key of TRAVELPROFILE, and there is a unique key constraint on it.

2.12.3.2. Unidirectional ManyToOne Relationships

The following mapping defaults apply:

* Entity A is mapped to a table named A.
» Entity B is mapped to a table named B.

 Table A contains a foreign key to table B. The foreign key column name is formed as the concatenation of the
following: the name of the relationship property or field of entity A; "_"; the name of the primary key column in
table B. The foreign key column has the same type as the primary key of table B.

Example:

public class Employee {
private Address address;

public Address getAddress() {
return address;

}

public void setAddress(Address address) {
this.address = address;

}

/] ...

public class Address {
/] ...
}

In this example:

* Entity Employee references a single instance of Entity Address.

o Entity Address does not reference Entity Employee.

27

 Entity Employee is the owner of the relationship.
The following mapping defaults apply:

* Entity Employee is mapped to a table named EMPLOYEE.
* Entity Address is mapped to a table named ADDRESS.

 Table EMPLOYEE contains a foreign key to table ADDRESS. The foreign key column is named ADDRESS_<PK of ADDRESS>,
where <PK of ADDRESS> denotes the name of the primary key column of table ADDRESS. The foreign key column has the
same type as the primary key of ADDRESS.

2.12.4. Bidirectional ManyToMany Relationships

Assuming that:

* Entity A references a collection of Entity B.
* Entity B references a collection of Entity A.

* Entity A is the owner of the relationship.
The following mapping defaults apply:

» Entity A is mapped to a table named A.

 Entity B is mapped to a table named B.

o There is a join table that is named A_B (owner name first). This join table has two foreign key columns. One foreign
key column refers to table A and has the same type as the primary key of table A. The name of this foreign key
column is formed as the concatenation of the following: the name of the relationship property or field of entity B; " _
"; the name of the primary key column in table A. The other foreign key column refers to table B and has the same
type as the primary key of table B. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A; " _"; the name of the primary key column in
table B.

Example:

public class Project {
private Collection<Employee> employees;

public Collection<Employee> getEmployees() {
return employees;

}
public void setEmployees(Collection<Employee> employees) {
this.employees = employees;

}

/] ...

public class Employee {
private Collection<Project> projects;

(mappedBy="employees")
public Collection<Project> getProjects() {

return projects;

}

public void setProjects(Collection<Project> projects) {

28

this.projects = projects;

VS

In this example:

* Entity Project references a collection of Entity Employee.
* Entity Employee references a collection of Entity Project.

* Entity Project is the owner of the relationship.
The following mapping defaults apply:

* Entity Project is mapped to a table named PROJECT.
* Entity Employee is mapped to a table named EMPLOYEE.

* There is a join table that is named PROJECT_EMPLOYEE (owner name first). This join table has two foreign key columns.
One foreign key column refers to table PROJECT and has the same type as the primary key of PROJECT. The name of this
foreign key column is PROJECTS_<PK of PROJECT>, where <PK of PROJECT> denotes the name of the primary key column
of table PROJECT. The other foreign key column refers to table EMPLOYEE and has the same type as the primary key of
EMPLOYEE. The name of this foreign key column is EMPLOYEES_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name
of the primary key column of table EMPLOYEE.

2.12.5. Unidirectional Multi-Valued Relationships

Assuming that:

* Entity A references a collection of Entity B.

* Entity B does not reference Entity A.
A unidirectional relationship has only an owning side, which in this case must be Entity A.

The unidirectional multi-valued relationship modeling case can be specified as either a unidirectional OneToMany or as a
unidirectional ManyToMany relationship.

2.12.5.1. Unidirectional OneToMany Relationships

The following mapping defaults apply:

* Entity A is mapped to a table named A.

» Entity B is mapped to a table named B.

* There is a join table that is named A_B (owner name first). This join table has two foreign key columns. One foreign
key column refers to table A and has the same type as the primary key of table A. The name of this foreign key
column is formed as the concatenation of the following: the name of entity A; " _"; the name of the primary key
column in table A. The other foreign key column refers to table B and has the same type as the primary key of table B
and there is a unique key constraint on it. The name of this foreign key column is formed as the concatenation of the
following: the name of the relationship property or field of entity A; " _"; the name of the primary key column in
table B.

Example:

public class Employee {
private Collection<AnnualReview> annualReviews;

29

public Collection<AnnualReview> getAnnualReviews() {
return annualReviews;

}

public void setAnnualReviews(Collection<AnnualReview> annualReviews) {
this.annualReviews = annualReviews;

}

/] ...

public class AnnualReview {
/] ...
}

In this example:

 Entity Employee references a collection of Entity AnnualReview.
* Entity AnnualReview does not reference Entity Employee.

* Entity Employee is the owner of the relationship.
The following mapping defaults apply:

* Entity Employee is mapped to a table named EMPLOYEE.

* Entity AnnualReview is mapped to a table named ANNUALREVIEW.

* There is a join table that is named EMPLOYEE_ANNUALREVIEW (owner name first). This join table has two foreign key
columns. One foreign key column refers to table EMPLOYEE and has the same type as the primary key of EMPLOYEE. This
foreign key column is named EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the primary key
column of table EMPLOYEE. The other foreign key column refers to table ANNUALREVIEW and has the same type as the
primary key of ANNUALREVIEW. This foreign key column is named ANNUALREVIEWS_<PK of ANNUALREVIEW>, where <PK of
ANNUALREVIEW> denotes the name of the primary key column of table ANNUALREVIEW. There is a unique key constraint on
the foreign key that refers to table ANNUALREVIEW.

2.12.5.2. Unidirectional ManyToMany Relationships

The following mapping defaults apply:

* Entity A is mapped to a table named A.

 Entity B is mapped to a table named B.

o There is a join table that is named A_B (owner name first). This join table has two foreign key columns. One foreign
key column refers to table A and has the same type as the primary key of table A. The name of this foreign key
column is formed as the concatenation of the following: the name of entity A; " _"; the name of the primary key
column in table A. The other foreign key column refers to table B and has the same type as the primary key of table B.
The name of this foreign key column is formed as the concatenation of the following: the name of the relationship
property or field of entity A; " _"; the name of the primary key column in table B.

Example:

public class Employee {
private Collection<Patent> patents;

public Collection<Patent> getPatents() {
return patents;

30

}

public void setPatents(Collection<Patent> patents) {
this.patents = patents;
}

/] ...

public class Patent {
//...
}

In this example:

* Entity Employee references a collection of Entity Patent.
* Entity Patent does not reference Entity Employee.

 Entity Employee is the owner of the relationship.
The following mapping defaults apply:

o Entity Employee is mapped to a table named EMPLOYEE.
* Entity Patent is mapped to a table named PATENT.

« There is a join table that is named EMPLOYEE_PATENT (owner name first). This join table has two foreign key columns.
One foreign key column refers to table EMPLOYEE and has the same type as the primary key of EMPLOYEE. This foreign
key column is named EMPLOYEE_<PK of EMPLOYEE>, where <PK of EMPLOYEE> denotes the name of the primary key column
of table EMPLOYEE. The other foreign key column refers to table PATENT and has the same type as the primary key of
PATENT. This foreign key column is named PATENTS_<PK of PATENT>, where <PK of PATENT> denotes the name of the
primary key column of table PATENT.

2.13. Inheritance

An entity may inherit from another entity class. Entities support inheritance, polymorphic associations, and
polymorphic queries.

Both abstract and concrete classes can be entities. Both abstract and concrete classes can be annotated with the Entity
annotation, mapped as entities, and queried for as entities.

Entities can extend non-entity classes and non-entity classes can extend entity classes.

These concepts are described further in the following sections.

2.13.1. Abstract Entity Classes

An abstract class can be specified as an entity. An abstract entity differs from a concrete entity only in that it cannot be
directly instantiated. An abstract entity is mapped as an entity and can be the target of queries (which will operate over
and/or retrieve instances of its concrete subclasses).

An abstract entity class is annotated with the Entity annotation or denoted in the XML descriptor as an entity.
The following example shows the use of an abstract entity class in the entity inheritance hierarchy.

Example: Abstract class as an Entity

(name="EMP")

31

(strategy=JOINED)
public abstract class Employee {

protected Integer empld;

protected Integer version;

protected Address address;

/] ...

(name="FT_EMP")
("FT")
(name="FT_EMPID")
public class FullTimeEmployee extends Employee {
// Inherit empId, but mapped in this class to FT_EMP.FT_EMPID
// Inherit version mapped to EMP.VERSION
// Inherit address mapped to EMP.ADDRESS fk

// Defaults to FT_EMP.SALARY
protected Integer salary;

/] ...

(name="PT_EMP")
("PTH)
// PK column is PT_EMP.EMPID due to ‘PrimaryKeyJoinColumn' default
public class PartTimeEmployee extends Employee {
protected Float hourlyWage;

/] ...

2.13.2. Mapped Superclasses

An entity may inherit from a superclass that provides persistent entity state and mapping information, but which is not
itself an entity. Typically, the purpose of such a mapped superclass is to define state and mapping information that is
common to multiple entity classes.

A mapped superclass, unlike an entity, is not queryable and must not be passed as an argument to EntityManager or Query
operations. Persistent relationships defined by a mapped superclass must be unidirectional.

Both abstract and concrete classes may be specified as mapped superclasses. The MappedSuperclass annotation (or mapped-
superclass XML descriptor element) is used to designate a mapped superclass.

A class designated as a mapped superclass has no separate table defined for it. Its mapping information is applied to
the entities that inherit from it.

The persistent attributes of a mapped superclass may be mapped in the same way as the attributes of an entity class.
Such mappings apply only to the entity subclasses of the mapped superclass, since no table exists for the mapped
superclass itself. When applied to a subclass, the inherited mappings are interpreted in the context of the tables
mapped by subclass. Mapping information inherited from a mapped superclass can be overridden in such subclasses
using the AttributeOverride and AssociationOverride annotations or corresponding XML elements.

All other entity mapping defaults apply equally to a class designated as a mapped superclass.

32

The following example illustrates the definition of a concrete class as a mapped superclass.

Example: Concrete class as a mapped superclass

©MappedSuperclass
public class Employee {
@Id
protected Integer empld;

@Version
protected Integer version;

@ManyToOne
@JoinColumn(name="ADDR")
protected Address address;

public Integer getEmpId() { ... }
public void setEmpId(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress(Address addr) { ... }
}

// Default table is FTEMPLOYEE table

EEntity

public class FTEmployee extends Employee {
// Inherited empId field mapped to FTEMPLOYEE.EMPID
// Inherited version field mapped to FTEMPLOYEE.VERSION
// Inherited address field mapped to FTEMPLOYEE.ADDR fk

// Defaults to FTEMPLOYEE.SALARY
protected Integer salary;

public FTEmployee() {}
public Integer getSalary() { ... }

public void setSalary(Integer salary) { ... }
}

@Entity
@Table(name="PT_EMP")
pAssociationOverride(name="address", joincolumns=@JoinColumn(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {
// Inherited empId field mapped to PT_EMP.EMPID
// Inherited version field mapped to PT_EMP.VERSION
// address field mapping overridden to PT_EMP.ADDR_ID fk
@Column(name="WAGE")
protected Float hourlyWage;

public PartTimeEmployee() {}
public Float getHourlyWage() { ... }

public void setHourlyWage(Float wage) { ... }

2.13.3. Non-Entity Classes in the Entity Inheritance Hierarchy

An entity can have a non-entity superclass, which may be either a concrete or abstract class.™

The non-entity superclass serves for inheritance of behavior only. The state of a non-entity superclass is not persistent.

33

Any state inherited from non-entity superclasses is non-persistent in an inheriting entity class. This non-persistent state

[29]

is not managed by the entity manager . Any annotations on such superclasses are ignored.

Non-entity classes cannot be passed as arguments to methods of the EntityManager or Query interfaces®™ and cannot bear
mapping information.

The following example illustrates the use of a non-entity class as a superclass of an entity.

Example: Non-entity superclass

public class Cart {
protected Integer operationCount; // transient state

public Cart() {
operationCount = 0;

}

public Integer getOperationCount() {
return operationCount;

}

public void incrementOperationCount() {
operationCount++;

}

public class ShoppingCart extends Cart {
Collection<Item> items = new Vector<Item>();

public ShoppingCart() {
super();

}

/] ...

public Collection<Item> getItems() {
return items;

}

public void addItem(Item item) {

items.add(item);
incrementOperationCount();

2.14. Inheritance Mapping Strategies

The mapping of class hierarchies is specified through metadata.
There are three basic strategies that are used when mapping a class or class hierarchy to a relational database:

* asingle table per class hierarchy

 ajoined subclass strategy, in which fields that are specific to a subclass are mapped to a separate table than the
fields that are common to the parent class, and a join is performed to instantiate the subclass.

* atable per concrete entity class

An implementation is required to support the single table per class hierarchy inheritance mapping strategy and the
joined subclass strategy.

34

0 Support for the table per concrete class inheritance mapping strategy is optional in this release.
Applications that use this mapping strategy will not be portable.

Support for the combination of inheritance strategies within a single entity inheritance hierarchy is not
required by this specification.

2.14.1. Single Table per Class Hierarchy Strategy

In this strategy, all the classes in a hierarchy are mapped to a single table. The table has a column that serves as a
“discriminator column”, that is, a column whose value identifies the specific subclass to which the instance that is
represented by the row belongs.

This mapping strategy provides good support for polymorphic relationships between entities and for queries that
range over the class hierarchy.

It has the drawback, however, that it requires that the columns that correspond to state specific to the subclasses be

nullable.

2.14.2. Joined Subclass Strategy

In the joined subclass strategy, the root of the class hierarchy is represented by a single table. Each subclass is
represented by a separate table that contains those fields that are specific to the subclass (not inherited from its
superclass), as well as the column(s) that represent its primary key. The primary key column(s) of the subclass table
serves as a foreign key to the primary key of the superclass table.

This strategy provides support for polymorphic relationships between entities.

It has the drawback that it requires that one or more join operations be performed to instantiate instances of a
subclass. In deep class hierarchies, this may lead to unacceptable performance. Queries that range over the class
hierarchy likewise require joins.

2.14.3. Table per Concrete Class Strategy

In this mapping strategy, each class is mapped to a separate table. All properties of the class, including inherited
properties, are mapped to columns of the table for the class.

This strategy has the following drawbacks:

* It provides poor support for polymorphic relationships.

o It typically requires that SQL UNION queries (or a separate SQL query per subclass) be issued for queries that are
intended to range over the class hierarchy.

2.15. Naming of Database Objects

Many annotations and annotation elements contain names of database objects or assume default names for database
objects.

This specification requires the following with regard to the interpretation of the names referencing database objects.
These names include the names of tables, columns, and other database elements. Such names also include names that
result from defaulting (e.g., a table name that is defaulted from an entity name or a column name that is defaulted from
a field or property name).

By default, the names of database objects must be treated as undelimited identifiers and passed to the database as such.

35

For example, assuming the use of an English locale, the following must be passed to the database as undelimited
identifers so that they will be treated as equivalent for all databases that comply with the SQL Standard’s requirements
for the treatment of “regular identifiers” (undelimited identifiers) and “delimited identifiers” [2]:

(name="Customer")
(name="customer")
(name="cUsTomer")

Similarly, the following must be treated as equivalent:

(name="CUSTOMER")
Customer customer;

(name="customer")
Customer customer;

Customer customer;

To specify delimited identifiers, one of the following approaches must be used:

« It is possible to specify that all database identifiers in use for a persistence unit be treated as delimited identifiers by
specifying the <delimited-identifiers/> element within the persistence-unit-defaults element of the object/relational
xml mapping file. If the <delimited-identifiers/> element is specified, it cannot be overridden.

* Itis possible to specify on a per-name basis that a name for a database object is to be interpreted as a delimited
identifier as follows:

- Using annotations, a name is specified as a delimited identifier by enclosing the name within double quotes,
whereby the inner quotes are escaped, e.g., @Table(name="\"customer\"").

o When using XML, a name is specified as a delimited identifier by use of double quotes, e.g., <table

31
namez""customer""/>[!

The following annotations contain elements whose values correspond to names of database identifiers and for which
the above rules apply, including when their use is nested within that of other annotations:

e EntityResult(discriminatorColumn element)

e FieldResult(column element)

e ColumnResult(name element)

e CollectionTable(name, catalog, schema elements)

e Column(name, columnDefinition, table elements)

e DiscriminatorColumn(name, columnDefinition elements)

* ForeignKey(name, foreignKeyDefinition elements)

* Index(name, columnList elements)

¢ JoinColumn(name, referencedColumnName, columnDefinition, table elements)

* JoinTable(name, catalog, schema elements)

e MapKeyColumn(name, columnDefinition, table elements)

* MapKeyJoinColumn(name, referencedColumnName, columnDefinition, table elements)
* NamedStoredProcedureQuery(procedureName element)

e OrderColumn(name, columnDefinition elements)

e PrimaryKeyJoinColumn(name, referencedColumnName, columnDefinition elements)
* SecondaryTable(name, catalog, schema elements)

* SequenceGenerator (sequenceName, catalog, schema elements)

e StoredProcedureParameter(name element)

36

e Table(name, catalog, schema elements)
e TableGenerator(table, catalog, schema, pkColumnName, valueColumnName elements)

* UniqueConstraint(name, columnNames elements)

The following XML elements and types contain elements or attributes whose values correspond to names of database
identifiers and for which the above rules apply:

e entity-mappings(schema, catalog elements)

* persistence-unit-defaults(schema, catalog elements)

e collection-table(name, catalog, schema attributes)

e column(name, table, column-definition attributes)

e column-result(name attribute)

e discriminator-column(name, column-definition attributes)

e entity-result(discriminator-column attribute)

e field-result(column attribute)

e foreign-key(name, foreign-key-definition attributes)

* index(name attribute, column-list element)

* join-column(name, referenced-column-name, column-definition, table attributes)

* join-table(name, catalog, schema attributes)

e map-key-column(name, column-definition, table attributes)

* map-key-join-column(name, referenced-column-name, column-definition, table attributes)
* named-stored-procedure-query(procedure-name attribute)

e order-column(name, column-definition attributes)

e primary-key-join-column(name, referenced-column-name, column-definition attributes)
* secondary-table(name, catalog, schema attributes)

* sequence-generator(sequence-name, catalog, schema attributes)

* stored-procedure-parameter(name attribute)

e table(name, catalog, schema attributes)

* table-generator(table, catalog, schema, pk-column-name, value-column-name attributes)

* unique-constraint(name attribute, column-name element)

[1] An entity instance is a local object inaccessible to remote processes. If instances of an entity are to be passed by
value as detached objects (e.g., via a remote interface), the entity class must be serializable.

[2] The term "persistence provider runtime" refers to the runtime environment of the persistence implementation. In a
JakartaEE environment, this might be the Jakarta EE container itself, or a third-party persistence provider
implementation integrated with the container.

[3] These annotations must not be applied to the setter methods.

[4] Portable applications should not expect the order of a list to be maintained across persistence contexts unless the
OrderColumn or OrderBy annotation is used and modifications to the list observe the specified ordering.

[5] A persistence provider is permitted—but not required—to accept the combinations @Basic @ElementCollection and
@Embedded @ElementCollection

[6] Specifically, if getX is the name of the getter method and setX is the name of the setter method, where X is any string,
the name of the persistent property is obtained by calling java.beans.Introspector.decapitalize(X).

[7] Lazy fetching is a hint to the persistence provider and can be specified by means of the Basic, OneToOne, OneToMany,
ManyToOne, ManyToMany, and ElementCollection annotations and their XML equivalents. See Chapter 11.

[8] The use of XML as an alternative and the interaction between Java language annotations and XML elements in

37

defining default and explicit access types is described in Chapter 12.

[9] An Access annotation of a field or property getter is considered a "mapping annotation" for the purposes of this
section. Therefore, an attribute-level Access annotation may not be used to selectively override the access type of an
attribute of an entity class with a defaulted access type.

[10] Composite primary keys often arise when mapping a legacy database with primary keys comprising multiple
columns.

[11] In general, however, approximate numeric types (e.g., floating point types) should never be used in primary keys.
[12] This includes not changing the value of a mutable type that is primary key or an attribute of a composite primary
key.

[13] The implementation may, but is not required to, throw an exception. Portable applications must not rely on any

such specific behavior.

[14] If the application does not set a primary key attribute mapped to the same column or columns as the relationship,
the value of that attribute might not be available until after the entity has been flushed to the database.

[15] The primary key of the parent might be represented as an embedded id or as an id class.

[16] Note that the use of PrimaryKeyJoinColumn instead of MapsId would result in the same mapping in this example.
Use of Mapsld is preferred for the mapping of derived identities.

[17] Bulk update statements, however, are permitted to set the version of an entity. See Section 4.11.
[18] Note that an instance of Calendar must be fully initialized for the SQL type it maps.

[19] The use of java.util.Calendar or of java.util.Date is strongly discouraged. Newly-written programs should use the
date/time types defined in the package java.time.

[20] The use of date/time types defined in the package java.sql is strongly discouraged. Newly-written programs should
use the date/time types defined in java.time.

[21] The use of Byte arrays or of Character arrays is discouraged. Newly-written programs should use byte or char arrays
instead.

[22] Direct or indirect circular containment dependencies among embeddable classes are not permitted.
[23] An entity cannot have a unidirectional relationship to the embeddable class of another entity (or itself).

[24] Note that when an embeddable instance is used as a map key, these attributes represent its identity. Changes to
embeddable instances used as map keys have undefined behaviour and should be avoided.

[25] For associations of type java.util.Map, target type refers to the type that is the Map value.

[26] If the parent is detached or new or was previously removed before the orphan was associated with it, the remove
operation is not applied to the entity being orphaned.

[27] When the relationship is modeled as a java.util.Map, “Entity B references a collection of Entity A” means that Entity
B references a map collection in which the type of the Map value is Entity A. The map key may be a basic type,
embeddable class, or an entity.

[28] The superclass must not be an embeddable class or id class.
[29] If a transaction-scoped persistence context is used, it is not required to be retained across transactions.
[30] This includes instances of a non-entity class that extends an entity class.

[31] If <delimited-identifiers> is specified and individual annotations or XML elements or attributes use escaped double
quotes, the double-quotes appear in the name of the database identifier.

38

Chapter 3. Entity Operations

This chapter describes:

¢ the use of the EntityManager and Query APIs to retrieve instances of entity classes representing persistent state held in
the database, and of EntityGraph to control the limits of the object graph returned by such operations,

« the use of the EntityManager API to manage the lifecycle of entity instances associated with a persistence context, and
to control the synchronization of state held in the persistence context with the database,

 the use of the second-level cache, and

« entity listeners and lifeycle callbacks, attribute converters, and integration with Bean Validation.

3.1. Overview

Every instance of EntityManager has an associated persistence context. A persistence context is a set of entity instances in
which for any given persistent entity identity there is a unique entity instance. Within the persistence context, the
entity instances and their lifecycle are managed. The entity instance lifecycle is defined in Section 3.3. The relationship
between entity managers and persistence contexts is described in Section 3.4, and again in further detail in Chapter 7.

The EntityManager interface defines the methods used to interact with its persistence context. The EntityManager API is
used to create and remove persistent entity instances, to find persistent entities by primary key, and to query over
persistent entity types. Section 3.2 describes the EntityManager interface. Section 3.5 describes mechanisms for
concurrency control and locking. Section 3.12 provides a summary of exceptions.

The EntityManager acts as a factory for instances of Query, which are used to control query execution. Query, TypedQuery,
StoredProcedureQuery, and related interfaces are described in Section 3.11. The Jakarta Persistence query language is
defined in Chapter 4 and APIs for the construction of Criteria queries in Chapter 6. Section 3.8 describes the use of
entity graphs to control and limit the data fetched during find and query operations.

Each EntityManager belongs to an EntityManagerFactory with an associated persistence unit. A persistence unit defines a set
of related entities which map to a single database. Entities belonging to the same persistence unit may participate in
associations. An EntityManager may only manage instances of entities belonging to its persistence unit. The definition of
persistence units is described in Chapter 8. An EntityManagerFactory might have an associated second-level cache.
Section 3.10 describes mechanisms for portable configuration of the second-level cache.

Jakarta Persistence features several mechanisms allowing user-written code to react to events occurring within the
persistence context. Section 3.6 describes entity listeners and lifecycle callback methods for entities. Section 3.7
describes support for automatic use of Bean Validation. Section 3.8 describes mechanisms for defining conversions
between entity and database representations for attributes of basic types.

3.2. EntityManager Interface

The EntityManager interface may be found in Section B.1.

The persist, merge, remove, and refresh methods must be invoked within a transaction context when an entity manager
with a transaction-scoped persistence context is used. If there is no transaction context, the

jakarta.persistence.TransactionRequiredException is thrown.

Methods that specify a lock mode other than LockModeType.NONE must be invoked within a transaction. If there is no
transaction or if the entity manager has not been joined to the transaction, the

jakarta.persistence.TransactionRequiredException is thrown.

The find method (provided it is invoked without a lock or invoked with LockModeType.NONE) and the getReference method

39

are not required to be invoked within a transaction. If an entity manager with transaction-scoped persistence context is
in use, the resulting entities will be detached; if an entity manager with an extended persistence context is used, they
will be managed. See Section 3.4 for entity manager use outside a transaction.

The Query, TypedQuery, StoredProcedureQuery, CriteriaBuilder, Metamodel, and EntityTransaction objects obtained from an
entity manager are valid while that entity manager is open.

If the argument to the createQuery method is not a valid Jakarta Persistence query string or a valid CriteriaQuery object,
the I1legalArgumentException may be thrown or the query execution will fail and a PersistenceException will be thrown. If
the result class specification of a Jakarta Persistence query language query is incompatible with the result of the query,
the I1legalArgumentException may be thrown when the createQuery method is invoked or the query execution will fail and
a PersistenceException will be thrown when the query is executed. If a native query is not a valid query for the database
in use or if the result set specification is incompatible with the result of the query, the query execution will fail and a
PersistenceException will be thrown when the query is executed. The PersistenceException should wrap the underlying
database exception when possible.

Runtime exceptions thrown by the methods of the EntityManager interface other than the LockTimeoutException will cause
the current transaction to be marked for rollback if the persistence context is joined to that transaction.

The methods close, isOpen, joinTransaction, and getTransaction are used to manage application-managed entity managers
and their lifecycle. See Section 7.2.2.

The EntityManager interface and other interfaces defined by this specification contain methods that take properties
and/or hints as arguments. This specification distinguishes between properties and hints as follows:

* A property defined by this specification must be observed by the provider unless otherwise explicitly stated.

* A hint specifies a preference on the part of the application. While a hint defined by this specification should be
observed by the provider if possible, a hint may or may not always be observed. A portable application must not
depend on the observance of a hint.

For example:

public class OrderEntryBean implements OrderEntry {
EntityManager em;
public void enterOrder(int custID, Order newOrder) {
Customer cust = em.find(Customer.class, custID);
cust.getOrders().add(newOrder);

newOrder.setCustomer(cust);
em.persist(newOrder);

o The semantics of

public <T> TypedQuery<T> createQuery(String qlString, Class<T> result(Class)

method may be extended in a future release of this specification to support other result types.
Applications that specify other result types (e.g., Tuple.class) will not be portable.

o The semantics

public <T> TypedQuery<T> createNamedQuery(String name, Class<T> result(Class)

40

method may be extended in a future release of this specification to support other result types.
Applications that specify other result types (e.g., Tuple.class) will not be portable.

3.3. Entity Instance’s Life Cycle

This section describes the EntityManager operations for managing an entity instance’s lifecycle. An entity instance can be
characterized as being new, managed, detached, or removed.

* A new entity instance has no persistent identity, and is not yet associated with a persistence context.

* A managed entity instance is an instance with a persistent identity that is currently associated with a persistence
context.

* A detached entity instance is an instance with a persistent identity that is not (or no longer) associated with a
persistence context.

* A removed entity instance is an instance with a persistent identity, associated with a persistence context, that will be
removed from the database upon transaction commit.

The following subsections describe the effect of lifecycle operations upon entities. Use of the cascade annotation element
may be used to propagate the effect of an operation to associated entities. The cascade functionality is most typically
used in parent-child relationships.

3.3.1. Entity Instance Creation

Entity instances are created by means of the new operation. An entity instance, when first created by new is not yet
persistent. An instance becomes persistent by means of the EntityManager API.

3.3.2. Persisting an Entity Instance

A new entity instance becomes both managed and persistent by invoking the persist method on it or by cascading the
persist operation.

The semantics of the persist operation, applied to an entity X are as follows:

o If X is a new entity, it becomes managed. The entity X will be entered into the database at or before transaction
commit or as a result of the flush operation.

« If X is a preexisting managed entity, it is ignored by the persist operation. However, the persist operation is cascaded
to entities referenced by X, if the relationships from X to these other entities are annotated with the cascade=PERSIST
or cascade=ALL annotation element value or specified with the equivalent XML descriptor element.

o If X is a removed entity, it becomes managed.

« If X is a detached object, the EntityExistsException may be thrown when the persist operation is invoked, or the
EntityExistsException or another PersistenceException may be thrown at flush or commit time.

* For all entities Y referenced by a relationship from X, if the relationship to Y has been annotated with the cascade
element value cascade=PERSIST or cascade=ALL, the persist operation is applied to Y.

3.3.3. Removal

A managed entity instance becomes removed by invoking the remove method on it or by cascading the remove
operation.

The semantics of the remove operation, applied to an entity X are as follows:

« If X is a new entity, it is ignored by the remove operation. However, the remove operation is cascaded to entities

41

referenced by X, if the relationship from X to these other entities is annotated with the cascade=REMOVE or cascade=ALL
annotation element value.

« If X is a managed entity, the remove operation causes it to become removed. The remove operation is cascaded to
entities referenced by X, if the relationships from X to these other entities is annotated with the cascade=REMOVE or
cascade=ALL annotation element value.

o If X is a detached entity, an I1legalArgumentException will be thrown by the remove operation (or the transaction
commit will fail).

« If X is a removed entity, it is ignored by the remove operation.

¢ Aremoved entity X will be removed from the database at or before transaction commit or as a result of the flush
operation.

After an entity has been removed, its state (except for generated state) will be that of the entity at the point at which the
remove operation was called.

3.3.4. Synchronization to the Database

In general, a persistence context will be synchronized to the database as described below. However, a persistence
context of type SynchronizationType.UNSYNCHRONIZED or an application-managed persistence context that has been created
outside the scope of the current transaction will only be synchronized to the database if it has been joined to the
current transaction by the application’s use of the EntityManager joinTransaction method.

The state of persistent entities is synchronized to the database at transaction commit. This synchronization involves
writing to the database any updates to persistent entities and their relationships as specified above.

An update to the state of an entity includes both the assignment of a new value to a persistent property or field of the
entity as well as the modification of a mutable value of a persistent property or field".

Synchronization to the database does not involve a refresh of any managed entities unless the refresh operation is
explicitly invoked on those entities or cascaded to them as a result of the specification of the cascade=REFRESH or
cascade=ALL annotation element value.

Bidirectional relationships between managed entities will be persisted based on references held by the owning side of
the relationship. It is the developer’s responsibility to keep the in-memory references held on the owning side and
those held on the inverse side consistent with each other when they change. In the case of unidirectional one-to-one
and one-to-many relationships, it is the developer’s responsibility to insure that the semantics of the relationships are
adhered to.”

It is particularly important to ensure that changes to the inverse side of a relationship result in
appropriate updates on the owning side, so as to ensure the changes are not lost when they are
synchronized to the database.

The persistence provider runtime is permitted to perform synchronization to the database at other times as well when
a transaction is active and the persistence context is joined to the transaction. The flush method can be used by the
application to force synchronization. It applies to entities associated with the persistence context. The setFlushMode
methods of the EntityManager, Query, TypedQuery, and StoredProcedureQuery interfaces can be used to control
synchronization semantics. The effect of FlushModeType.AUTO is defined in Section 3.11.2. If FlushModeType.COMMIT is
specified, flushing will occur at transaction commit; the persistence provider is permitted, but not required, to perform
to flush at other times. If there is no transaction active or if the persistence context has not been joined to the current
transaction, the persistence provider must not flush to the database.

The semantics of the flush operation, applied to an entity X are as follows:

42

» If X is a managed entity, it is synchronized to the database.
- For all entities Y referenced by a relationship from X, if the relationship to Y has been annotated with the cascade
element value cascade=PERSIST or cascade=ALL, the persist operation is applied to Y.
- For any entity Y referenced by a relationship from X, where the relationship to Y has not been annotated with the
cascade element value cascade=PERSIST or cascade=ALL:
= If Yis new or removed, an I1legalStateException will be thrown by the flush operation (and the transaction
marked for rollback) or the transaction commit will fail.
= If Y is detached, the semantics depend upon the ownership of the relationship. If X owns the relationship, any
changes to the relationship are synchronized with the database; otherwise, if Y owns the relationships, the
behavior is undefined.

» If X is a removed entity, it is removed from the database. No cascade options are relevant.

3.3.5. Refreshing an Entity Instance

The state of a managed entity instance is refreshed from the database by invoking the refresh method on it or by
cascading the refresh operation.

The semantics of the refresh operation, applied to an entity X are as follows:

« If X is a managed entity, the state of X is refreshed from the database, overwriting changes made to the entity, if any.
The refresh operation is cascaded to entities referenced by X if the relationship from X to these other entities is
annotated with the cascade=REFRESH or cascade=ALL annotation element value.

o If X is a new, detached, or removed entity, the I1legalArgumentException is thrown.

3.3.6. Evicting an Entity Instance from the Persistence Context

An entity instance is removed from the persistence context by invoking the detach method on it or cascading the detach
operation. Changes made to the entity, if any (including removal of the entity), will not be synchronized to the database
after such eviction has taken place.

Applications must use the flush method prior to the detach method to ensure portable semantics if changes have been
made to the entity (including removal of the entity). Because the persistence provider may write to the database at
times other than the explicit invocation of the flush method, portable applications must not assume that changes have
not been written to the database if the flush method has not been called prior to detach.

The semantics of the detach operation, applied to an entity X are as follows:

» If X is a managed entity, the detach operation causes it to become detached. The detach operation is cascaded to
entities referenced by X if the relationships from X to these other entities is annotated with the cascade=DETACH or
cascade=ALL annotation element value. Entities which previously referenced X will continue to reference X.

« If X is a new or detached entity, it is ignored by the detach operation.

o If X is a removed entity, the detach operation causes it to become detached. The detach operation is cascaded to
entities referenced by X if the relationships from X to these other entities is annotated with the cascade=DETACH or
cascade=ALL annotation element value. Entities which previously referenced X will continue to reference X. Portable
applications should not pass removed entities that have been detached from the persistence context to further
EntityManager operations.

3.3.7. Detached Entities

A detached entity results from transaction commit if a transaction-scoped persistence context is used (see Section 3.4);
from transaction rollback (see Section 3.4.3); from detaching the entity from the persistence context; from clearing the

43

persistence context; from closing an entity manager; or from serializing an entity or otherwise passing an entity by
value—e.g., to a separate application tier, through a remote interface, etc.

Detached entity instances continue to live outside of the persistence context in which they were persisted or retrieved.
Their state is no longer guaranteed to be synchronized with the database state.

The application may access the available state of available detached entity instances after the persistence context ends.
The available state includes:

* Any persistent field or property not marked fetch=LAZY

* Any persistent field or property that was accessed by the application or fetched by means of an entity graph

If the persistent field or property is an association, the available state of an associated instance may only be safely
accessed if the associated instance is available. The available instances include:

* Any entity instance retrieved using find().

* Any entity instances retrieved using a query or explicitly requested in a fetch join.

* Any entity instance for which an instance variable holding non-primary-key persistent state was accessed by the
application.

* Any entity instance that can be reached from another available instance by navigating associations marked
fetch=EAGER.

3.3.7.1. Merging Detached Entity State

The merge operation allows for the propagation of state from detached entities onto persistent entities managed by the
entity manager.

The semantics of the merge operation applied to an entity X are as follows:

« If X is a detached entity, the state of X is copied onto a pre-existing managed entity instance X' of the same identity or
a new managed copy X' of X is created.

» If X is a new entity instance, a new managed entity instance X' is created and the state of X is copied into the new
managed entity instance X'.

« If X is a removed entity instance, an I11egalArgumentException will be thrown by the merge operation (or the
transaction commit will fail).

o If X is a managed entity, it is ignored by the merge operation, however, the merge operation is cascaded to entities
referenced by relationships from X if these relationships have been annotated with the cascade element value
cascade=MERGE or cascade=ALL annotation.

* For all entities Y referenced by relationships from X having the cascade element value cascade=MERGE or cascade=ALL, Y
is merged recursively as Y'. For all such Y referenced by X, X' is set to reference Y'. (Note that if X is managed then X
is the same object as X".)

o If X is an entity merged to X', with a reference to another entity Y, where cascade=MERGE or cascade=ALL is not specified,
then navigation of the same association from X' yields a reference to a managed object Y' with the same persistent
identity as Y.

The persistence provider must not merge fields marked LAZY that have not been fetched: it must ignore such fields
when merging.

Any Version columns used by the entity must be checked by the persistence runtime implementation during the merge
operation and/or at flush or commit time. In the absence of Version columns there is no additional version checking
done by the persistence provider runtime during the merge operation.

44

3.3.7.2. Detached Entities and Lazy Loading

Serializing entities and merging those entities back into a persistence context may not be interoperable across vendors
when lazy properties or fields and/or relationships are used.

A vendor is required to support the serialization and subsequent deserialization and merging of detached entity
instances (which may contain lazy properties or fields and/or relationships that have not been fetched) back into a
separate JVM instance of that vendor’s runtime, where both runtime instances have access to the entity classes and any
required vendor persistence implementation classes.

When interoperability across vendors is required, the application must not use lazy loading.

3.3.8. Managed Instances

It is the responsibility of the application to insure that an instance is managed in only a single persistence context. The
behavior is undefined if the same Java instance is made managed in more than one persistence context.

The contains() method can be used to determine whether an entity instance is managed in the current persistence
context.

The contains method returns true:

« If the entity has been retrieved from the database or has been returned by getReference, and has not been removed
or detached.

o If the entity instance is new, and the persist method has been called on the entity or the persist operation has been
cascaded to it.

The contains method returns false:

« If the instance is detached.
o If the remove method has been called on the entity, or the remove operation has been cascaded to it.

o If the instance is new, and the persist method has not been called on the entity or the persist operation has not been
cascaded to it.

Note that the effect of the cascading of persist, merge, remove, or detach is immediately visible to the contains method,
whereas the actual insertion, modification, or deletion of the database representation for the entity may be deferred
until the end of the transaction.

3.3.9. Load State

An entity is considered to be loaded if all attributes with FetchType.EAGER —whether explictly specified or by
default—(including relationship and other collection-valued attributes) have been loaded from the database or
assigned by the application. Attributes with FetchType.LAZY may or may not have been loaded. The available state of the
entity instance and associated instances is as described in Section 3.3.7.

An attribute that is an embeddable is considered to be loaded if the embeddable attribute was loaded from the
database or assigned by the application, and, if the attribute references an embeddable instance (i.e., is not null), the
embeddable instance state is known to be loaded (i.e., all attributes of the embeddable with FetchType.EAGER have been
loaded from the database or assigned by the application).

A collection-valued attribute is considered to be loaded if the collection was loaded from the database or the value of
the attribute was assigned by the application, and, if the attribute references a collection instance (i.e., is not null), each
element of the collection (e.g. entity or embeddable) is considered to be loaded.

45

A single-valued relationship attribute is considered to be loaded if the relationship attribute was loaded from the
database or assigned by the application, and, if the attribute references an entity instance (i.e., is not null), the entity
instance state is known to be loaded.

A basic attribute is considered to be loaded if its state has been loaded from the database or assigned by the
application.

The PersistenceUtil.isLoaded methods can be used to determine the load state of an entity and its attributes regardless
of the persistence unit with which the entity is associated. The PersistenceUtil.isLoaded methods return true if the
above conditions hold, and false otherwise. If the persistence unit is known, the PersistenceUnitUtil.isLoaded methods
can be used instead. See Section 7.11.

Persistence provider contracts for determining the load state of an entity or entity attribute are described in Section
9.9.1.

3.4. Persistence Context Lifetime and Synchronization Type

The lifetime of a container-managed persistence context can either be scoped to a transaction (transaction-scoped
persistence context), or have a lifetime scope that extends beyond that of a single transaction (extended persistence
context). The enum PersistenceContextType is used to define the persistence context lifetime scope for container-
managed entity managers. The persistence context lifetime scope is defined when the EntityManager instance is
created (Whether explicitly, or in conjunction with injection or JNDI lookup). See Section 7.7.

/**
* Specifies whether a transaction-scoped or extended persistence
* context is to be used in {@link PersistenceContext}. If not

* specified, a transaction-scoped persistence context is used.
*

*
/
public enum PersistenceContextType {

@since 1.0

/** Transaction-scoped persistence context */
TRANSACTION,

/** Extended persistence context */
EXTENDED

By default, the lifetime of the persistence context of a container-managed entity manager corresponds to the scope of a
transaction (i.e., it is of type PersistenceContextType.TRANSACTION).

When an extended persistence context is used, the extended persistence context exists from the time the
EntityManager instance is created until it is closed. This persistence context might span multiple transactions and non-
transactional invocations of the EntityManager.

An EntityManager with an extended persistence context maintains its references to the entity objects after a
transaction has committed. Those objects remain managed by the EntityManager, and they can be updated as managed

(3]

objects between transactions.” Navigation from a managed object in an extended persistence context results in one or

more other managed objects regardless of whether a transaction is active.

When an EntityManager with an extended persistence context is used, the persist, remove, merge, and refresh
operations can be called regardless of whether a transaction is active. The effects of these operations will be committed
to the database when the extended persistence context is enlisted in a transaction and the transaction commits.

The scope of the persistence context of an application-managed entity manager is extended. It is the responsibility of

46

the application to manage the lifecycle of the persistence context.

Container-managed persistence contexts are described further in Section 7.7. Persistence contexts managed by the
application are described further in Section 7.8.

3.4.1. Synchronization with the Current Transaction

By default, a container-managed persistence context is of SynchronizationType.SYNCHRONIZED and is automatically joined to
the current transaction. A persistence context of SynchronizationType.UNSYNCHRONIZED will not be enlisted in the current
transaction, unless the EntityManager joinTransaction method is invoked.

By default, an application-managed persistence context that is associated with a JTA entity manager and that is created
within the scope of an active transaction is automatically joined to that transaction. An application-managed JTA
persistence context that is created outside the scope of a transaction or an application-managed persistence context of
type SynchronizationType.UNSYNCHRONIZED will not be joined to that transaction unless the EntityManager joinTransaction
method is invoked.

An application-managed persistence context associated with a resource-local entity manager is always automatically
joined to any resource-local transaction that is begun for that entity manager.

Persistence context synchronization type is described further in Section 7.7.1.

3.4.2. Transaction Commit

The managed entities of a transaction-scoped persistence context become detached when the transaction commits; the
managed entities of an extended persistence context remain managed.

3.4.3. Transaction Rollback

For both transaction-scoped persistence contexts and for extended persistence contexts that are joined to the current
transaction, transaction rollback causes all pre-existing managed instances and removed instances' to become
detached. The instances' state will be the state of the instances at the point at which the transaction was rolled back.
Transaction rollback typically causes the persistence context to be in an inconsistent state at the point of rollback. In
particular, the state of version attributes and generated state (e.g., generated primary keys) may be inconsistent.
Instances that were formerly managed by the persistence context (including new instances that were made persistent
in that transaction) may therefore not be reusable in the same manner as other detached objects—for example, they
may fail when passed to the merge operation.”

o Because a transaction-scoped persistence context’s lifetime is scoped to a transaction regardless of
whether it is joined to that transaction, the container closes the persistence context upon transaction
rollback. However, an extended persistence context that is not joined to a transaction is unaffected by
transaction rollback.

3.5. Locking and Concurrency

This specification assumes the use of optimistic concurrency control. It assumes that the databases to which persistence
units are mapped will be accessed by the implementation using read-committed isolation (or a vendor equivalent in
which long-term read locks are not held), and that writes to the database will typically occur only when the flush
method has been invoked—whether explicitly by the application, or by the persistence provider runtime in accordance
with the flush mode setting.

47

o If a transaction is active and the persistence context is joined to the transaction, a compliant
implementation of this specification is permitted to write to the database immediately (i.e., whenever a
managed entity is updated, created, and/or removed), however, the configuration of an implementation
to require such non-deferred database writes is outside the scope of this specification.”

In addition, both pessimistic and optimistic locking are supported for selected entities by means of specified lock
modes. Optimistic locking is described in Section 3.5.1 and Section 3.5.2; pessimistic locking in Section 3.5.3. Section
3.5.4 describes the setting of optimistic and pessimistic lock modes. The configuration of the setting of optimistic lock
modes is described in Section 3.5.4.1, and the configuration of the setting of pessimistic lock modes is described in
Section 3.5.4.2.

3.5.1. Optimistic Locking

Optimistic locking is a system of concurrency control where each revision of an item of data is assigned a version
number or timestamp. When the data is read and then updated within a given unit of work, the version or timestamp
is:

1. read from the database when the data itself is read, and

2. verified and then updated in the database when the data is updated.
Similarly, when the data is read and then deleted within a given unit of work, the version or timestamp is:

1. read from the database when the data itself is read, and

2. verified when the data is deleted.

An optimistic lock failure occurs when verification fails, that is, if the version or timestamp held in the database
changes between reading the data (step 1), and attempting to update or delete the data (step 2).

Thus, the unit of work is prevented from updating the data and creating a new revision, or from deleting the data,
unless the revision it previously obtained is still the current revision. Optimistic lock verification ensures that an
update of a given item is successful only when no intervening transaction has already updated the item, preventing the
loss of updates made by such intervening transactions.

The persistence provider is required to perform optimistic locking automatically for every entity with a version, as
defined in Section 2.5. A portable application which wishes to take advantage of automatic optimistic locking must
specify a version field or property for each optimistically-locked entity using the @Version annotation defined in Section
11.1.57 or equivalent XML element.

When an optimistic lock failure is detected, the persistence provider must:

e throw an OptimisticLockException and

» mark the current transaction for rollback.

A persistence provider might offer alternative implementations of optimistic locking, which do not depend on the
entity having a version, but such functionality is not portable between providers.”

o Applications are strongly encouraged to enable optimistic locking for every entity which may be
concurrently accessed or which may be merged from a detached state. Failure to make use of optimistic
locking often leads to inconsistent entity state, lost updates, and other anomalies. If an entity does not
have a version, the application itself must bear the burden of maintaining data consistency during
optimistic units of work.

For the purposes of versioning and optimistic locking, the state of a given entity is considered to include:

48

* every persistent field or property which is not a relationship to another entity, and

« every relationship owned by the entity, as defined by Section 2.11. "

Unowned relationships are not considered part of the state of the entity.

3.5.2. Entity Versions and Optimistic Locking

The entity version must be updated by the persistence provider each time the state of an entity instance is written to
the database. ™ Furthermore, if the current persistence context contains a revision of the entity instance when the
instance is written to the database, the persistence provider must verify that the revision held in the persistence
context is identical to the revision held in the database by comparing the versions held in memory and in the database.
M1 1f the versions do not match, the persistence provider must thow an OptimisticLockException.

The persistence provider must examine the version field or property of a detached entity instance when it is merged,
as defined in Section 3.3.7.1, and throw an OptimisticLockException if the instance being merged holds a stale revision of
the state of the entity—that is, if the entity was updated since the entity instance became detached. The timing of this
version check is provider-dependent:

¢ the version check might occur synchronously with the call to merge(), or

« a provider might choose to delay the version check until a flush operation occurs, as defined in Section 3.3.4, or until
the transaction commuits.

If an update or merge operation involves entities with versions, and entities without versions, the persistence provider
runtime is only required to perform optimistic lock verification for those entities which do have a version, and the
consistency of the whole object graph is not guaranteed. The absence a version for some entity involved in the update
or merge operation does not impede completion of the operation.

3.5.3. Pessimistic Locking

While optimistic locking is typically appropriate in dealing with moderate contention among concurrent transactions,
in some applications it may be useful to immediately obtain long-term database locks for selected entities because of
the often late failure of optimistic transactions. Such immediately obtained long-term database locks are referred to

here as “pessimistic” locks.™"

Pessimistic locking guarantees that once a transaction has obtained a pessimistic lock on an entity instance:

* no other transaction (Whether a transaction of an application using the Jakarta Persistence API or any other
transaction using the underlying resource) may successfully modify or delete that instance until the transaction
holding the lock has ended.

« if the pessimistic lock is an exclusive lock"”, that same transaction may modify or delete that entity instance.

When an entity instance is locked using pessimistic locking, the persistence provider must lock the database row(s) that
correspond to the non-collection-valued persistent state of that instance. If a joined inheritance strategy is used, or if
the entity is otherwise mapped to a secondary table, this entails locking the row(s) for the entity instance in the
additional table(s). Entity relationships for which the locked entity contains the foreign key will also be locked, but not
the state of the referenced entities (unless those entities are explicitly locked). Element collections and relationships for
which the entity does not contain the foreign key (such as relationships that are mapped to join tables or unidirectional
one-to-many relationships for which the target entity contains the foreign key) will not be locked by default.

Element collections and relationships owned by the entity that are contained in join tables will be locked if the
jakarta.persistence.lock.scope property is specified with a value of PessimisticLockScope.EXTENDED. The state of entities
referenced by such relationships will not be locked (unless those entities are explicitly locked). This property may be
passed as an argument to the methods of the EntityManager, Query, and TypedQuery interfaces that allow lock modes to be

49

specified or used with the NamedQuery annotation.

Locking such a relationship or element collection generally locks only the rows in the join table or collection table for
that relationship or collection. This means that phantoms will be possible.

The values of the jakarta.persistence.lock.scope property are defined by the PessimisticLockScope enum.

/**k

Defines the values of the {@code jakarta.persistence.lock.scope}
property for pessimistic locking. This property may be passed as an
argument to the methods of the {@link EntityManager}, {@link Query},
and {@link TypedQuery} interfaces that allow lock modes to be specified
or used with the {@link NamedQuery} annotation.

L R N T

@since 2.0
*/
public enum PessimisticLockScope implements FindOption, RefreshOption, LockOption {

/~k~k
This value defines the default behavior for pessimistic locking.

*

*

* <p>The persistence provider must lock the database row(s) that
* correspond to the non-collection-valued persistent state of

* that instance. If a joined inheritance strategy is used, or if
* the entity is otherwise mapped to a secondary table, this

* entails locking the row(s) for the entity instance in the
additional table(s). Entity relationships for which the locked
entity contains the foreign key will also be locked, but not
the state of the referenced entities (unless those entities are
explicitly locked). Element collections and relationships for
which the entity does not contain the foreign key (such as
relationships that are mapped to join tables or unidirectional
one-to-many relationships for which the target entity contains
the foreign key) will not be locked by default.

* *

* F F F X X

*/
NORMAL,

/**

In addition to the locking behavior specified for {@link #NORMAL},
element collections and relationships owned by the entity that

are contained in join tables are locked if the property

{@code jakarta.persistence.lock.scope} is specified with a value
of {@code PessimisticLockScope#EXTENDED}. The state of entities
referenced by such relationships is not locked (unless those
entities are explicitly locked). Locking such a relationship or

* element collection generally locks only the rows in the join table
* or collection table for that relationship or collection. This means
* that phantoms are possible.

*/

EXTENDED

* 0k F X X

* *

This specification does not define the mechanisms a persistence provider uses to obtain database locks, and a portable
application should not rely on how pessimistic locking is achieved on the database.”"” In particular, a persistence
provider or the underlying database management system may lock more rows than the ones selected by the
application.

Whenever a pessimistically locked entity containing a version attribute is updated on the database, the persistence
provider must also update (increment) the entity’s version column to enable correct interaction with applications using
optimistic locking. See Section 3.5.2 and Section 3.5.4.

Pessimistic locking may be applied to entities that do not contain version attributes. However, in this case correct

50

interaction with applications using optimistic locking cannot be ensured.

3.5.4. Lock Modes

Lock modes are intended to provide a facility that enables the effect of “repeatable read” semantics for the items read,
whether “optimistically” (as described in Section 3.5.4.1) or “pessimistically” (as described in Section 3.5.4.2).

Alock mode may be explicitly specified as an argument to the lock() method of EntityManager or to any other method of
EntityManager, Query, and TypedQuery which accepts a lock mode, or via the NamedQuery annotation.

Lock mode values are defined by the LockModeType enum which may be found in Section B.4. Six distinct lock modes are
defined. "* The lock mode type values READ and WRITE are synonyms for OPTIMISTIC and OPTIMISTIC_FORCE_INCREMENT
respectively. The latter are to be preferred for new applications.

3.5.4.1. OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT

The lock modes OPTIMISTIC and OPTIMISTIC_FORCE_INCREMENT are used for optimistic locking. The lock mode type values READ
and WRITE are synonymous with OPTIMISTIC and OPTIMISTIC_FORCE_INCREMENT respectively.

The semantics of requesting locks of type LockModeType.OPTIMISTIC and LockModeType.OPTIMISTIC_FORCE_INCREMENT are the
following.

If transaction T1 calls lock(entity, LockModeType.OPTIMISTIC) on a versioned object, the entity manager must ensure that
neither of the following phenomena can occur:

* P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and obtains the modified
value, before T1 has committed or rolled back. Transaction T2 eventually commits successfully; it does not matter
whether T1 commits or rolls back and whether it does so before or after T2 commits.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or deletes that row,
before T1 has committed. Both transactions eventually commit successfully.

This will generally be achieved by the entity manager acquiring a lock on the underlying database row. While with
optimistic concurrency concurrency, long-term database read locks are typically not obtained immediately, a compliant
implementation is permitted to obtain an immediate lock (so long as it is retained until commit completes). If the lock is
deferred until commit time, it must be retained until the commit completes. Any implementation that supports
repeatable reads in a way that prevents the above phenomena is permissible.

The persistence implementation is not required to support calling lock(entity, LockModeType.OPTIMISTIC) on a non-
versioned object. When it cannot support such a lock call, it must throw the PersistenceException. When supported,
whether for versioned or non-versioned objects, LockModeType.0PTIMISTIC must always prevent the phenomena P1 and
P2. Applications that call lock(entity, LockModeType.OPTIMISTIC) on non-versioned objects are not portable.

If transaction T1 calls lock(entity, LockModeType.OPTIMISTIC_FORCE_INCREMENT) on a versioned object, the entity manager
must avoid the phenomena P1 and P2 (as with LockModeType.0PTIMISTIC) and must also force an update (increment) to the
entity’s version column. A forced version update may be performed immediately, or may be deferred until a flush or
commit. If an entity is removed before a deferred version update was to have been applied, the forced version update
is omitted.

The persistence implementation is not required to support calling lock(entity, LockModeType.OPTIMISTIC_FORCE_INCREMENT)
on a non-versioned object. When it cannot support such a lock call, it must throw the PersistenceException. When
supported, whether for versioned or non-versioned objects, LockModeType.OPTIMISTIC_FORCE_INCREMENT must always
prevent the phenomena P1 and P2. For non-versioned objects, whether or not LockModeType .OPTIMISTIC_FORCE_INCREMENT
has any additional behavior is vendor-specific. Applications that call "lock(entity,

51

LockModeType.OPTIMISTIC_FORCE_INCREMENT)_ on non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation to use LockModeType.OPTIMISTIC_FORCE_INCREMENT where
LockModeType.OPTIMISTIC was requested, but not vice versa.

If a versioned object is otherwise updated or removed, then the implementation must ensure that the requirements of
LockModeType.OPTIMISTIC_FORCE_INCREMENT are met, even if no explicit call to EntityManager.lock was made.

For portability, an application should not depend on vendor-specific hints or configuration to ensure repeatable read
for objects that are not updated or removed via any mechanism other than the use of version attributes and the
EntityManager lock method. However, it should be noted that if an implementation has acquired up-front pessimistic
locks on some database rows, then it is free to ignore lock(entity, LockModeType.OPTIMISTIC) calls on the entity objects
representing those rows.

3.5.4.2. PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT

The lock modes PESSIMISTIC_READ, PESSIMISTIC_WRITE, and PESSIMISTIC_FORCE_INCREMENT are used to immediately obtain long-

term database locks.™

The semantics of requesting locks of type LockModeType.PESSIMISTIC_READ, LockModeType.PESSIMISTIC_WRITE, and
LockModeType.PESSIMISTIC_FORCE_INCREMENT are the following.

If transaction T1 calls lock(entity, LockModeType.PESSIMISTIC_READ) or lock(entity, LockModeType.PESSIMISTIC_WRITE) on an
object, the entity manager must ensure that neither of the following phenomena can occur:

« P1 (Dirty read): Transaction T1 modifies a row. Another transaction T2 then reads that row and obtains the modified
value, before T1 has committed or rolled back.

* P2 (Non-repeatable read): Transaction T1 reads a row. Another transaction T2 then modifies or deletes that row,
before T1 has committed or rolled back.

Any such lock must be obtained immediately and retained until transaction T1 completes (commits or rolls back).

Avoidance of phenomena P1 and P2 is generally achieved by the entity manager acquiring a long-term lock on the
underlying database row(s). Any implementation that supports pessimistic repeatable reads as described above is
permissible.

o A lock with LockModeType.PESSIMISTIC_WRITE can be obtained on an entity instance to force serialization
among transactions attempting to update the entity data. A lock with LockModeType.PESSIMISTIC_READ can
be used to query data using repeatable-read semantics without the need to reread the data at the end of
the transaction to obtain a lock, and without blocking other transactions reading the data. A lock with
LockModeType.PESSIMISTIC_WRITE can be used when querying data and there is a high likelihood of
deadlock or update failure among concurrent updating transactions.

The persistence implementation must support calling lock(entity, LockModeType.PESSIMISTIC_READ) and lock(entity,
LockModeType.PESSIMISTIC_WRITE) on a non-versioned entity as well as on a versioned entity.

It is permissible for an implementation to use LockModeType.PESSIMISTIC_WRITE where LockModeType.PESSIMISTIC_READ was
requested, but not vice versa.

When the lock cannot be obtained, and the database locking failure results in transaction-level rollback, the provider
must throw the PessimisticLockException and ensure that the JTA transaction or EntityTransaction has been marked for
rollback.

When the lock cannot be obtained, and the database locking failure results in only statement-level rollback, the

52

provider must throw the LockTimeoutException (and must not mark the transaction for rollback).

When an application locks an entity with LockModeType.PESSIMISTIC_READ and later updates that entity, the lock must be
converted to an exclusive lock when the entity is flushed to the database."® If the lock conversion fails, and the
database locking failure results in transaction-level rollback, the provider must throw the PessimisticLockException and
ensure that the JTA transaction or EntityTransaction has been marked for rollback. When the lock conversion fails, and
the database locking failure results in only statement-level rollback, the provider must throw the LockTimeoutException
(and must not mark the transaction for rollback).

When lock(entity, LockModeType.PESSIMISTIC_READ), lock(entity, LockModeType.PESSIMISTIC_WRITE), or lock(entity,
LockModeType.PESSIMISTIC_FORCE_INCREMENT) is invoked on a versioned entity that is already in the persistence context, the
provider must also perform optimistic version checks when obtaining the lock. An OptimisticLockException must be
thrown if the version checks fail. Depending on the implementation strategy used by the provider, it is possible that
this exception may not be thrown until flush is called or commit time, whichever occurs first.

If transaction T1 calls lock(entity, LockModeType.PESSIMISTIC_FORCE_INCREMENT) on a versioned object, the entity manager
must avoid the phenomenon P1 and P2 (as with LockModeType.PESSIMISTIC_READ and LockModeType.PESSIMISTIC_WRITE) and
must also force an update (increment) to the entity’s version column.

The persistence implementation is not required to support calling lock(entity,
LockModeType.PESSIMISTIC_FORCE_INCREMENT) on a non-versioned object. When it cannot support such a lock call, it must
throw the PersistenceException. When supported, whether for versioned or non-versioned objects,
LockModeType.PESSIMISTIC_FORCE_INCREMENT must always prevent the phenomena P1 and P2. For non-versioned objects,
whether or not LockModeType.PESSIMISTIC_FORCE_INCREMENT has any additional behavior is vendor-specific. Applications
that call lock(entity, LockModeType.PESSIMISTIC_FORCE_INCREMENT) on non-versioned objects will not be portable.

For versioned objects, it is permissible for an implementation to use LockModeType.PESSIMISTIC_FORCE_INCREMENT where
LockModeType.PESSIMISTIC_READ or LockModeType.PESSIMISTIC_WRITE was requested, but not vice versa.

If a versioned object locked with LockModeType.PESSIMISTIC_READ or LockModeType.PESSIMISTIC_WRITE is updated, then the

implementation must ensure that the requirements of LockModeType.PESSIMISTIC_FORCE_INCREMENT are met.

3.5.4.3. Lock Mode Properties and Uses
The following property is defined by this specification for use in pessimistic locking, as described in Section 3.5.3:

jakarta.persistence.lock.scope

This property may be used with the methods of the EntityManager interface that allow lock modes to be specified, the
Query and TypedQuery setLockMode methods, and the NamedQuery annotation. When specified, this property must be
observed. The provider is permitted to lock more (but not fewer) rows than requested.

The following hint is defined by this specification for use in pessimistic locking.

jakarta.persistence.lock.timeout // time in milliseconds

This hint may be used with the methods of the EntityManager interface that allow lock modes to be specified, the
Query.setLockMode method and the NamedQuery annotation. It may also be passed as a property to the
Persistence.createEntityManagerFactory method and used in the properties element of the persistence.xml file. See Section
3.2, Section 3.11.3, Section 8.2.1.11, Section 9.7, and Section 10.4.1. When used in the createEntityManagerFactory method,
the persistence.xml file, and the NamedQuery annotation, the timeout hint serves as a default value which can be
selectively overridden by use in the methods of the EntityManager, Query, and TypedQuery interfaces as specified above.
When this hint is not specified, database timeout values are assumed to apply.

33

A timeout value of 0 is used to specify “no wait” locking.

Portable applications should not rely on this hint. Depending on the database in use and the locking mechanisms used
by the persistence provider, the hint may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific locking hints. Vendor-specific hints must not
use the jakarta.persistence namespace. Vendor-specific hints must be ignored if they are not understood.

If the same property or hint is specified more than once, the following order of overriding applies, in order of
decreasing precedence:

o argument to method of EntityManager, Query, or TypedQuery interface
* specification to NamedQuery (annotation or XML)
o argument to createEntityManagerFactory method

¢ gpecification in persistence.xml

3.5.5. OptimisticLockException

Provider implementations may defer writing to the database until the end of the transaction, when consistent with the
lock mode and flush mode settings in effect. In this case, an optimistic lock check may not occur until commit time, and
the OptimisticLockException may be thrown in the “before completion” phase of the commit. If the
OptimisticLockException must be caught or handled by the application, the flush method should be used by the
application to force the database writes to occur. This will allow the application to catch and handle optimistic lock
exceptions.

The OptimisticLockException provides an API to return the object that caused the exception to be thrown. The object
reference is not guaranteed to be present every time the exception is thrown but should be provided whenever the
persistence provider can supply it. Applications cannot rely upon this object being available.

In some cases an OptimisticLockException will be thrown and wrapped by another exception, such as a RemoteException,
when VM boundaries are crossed. Entities that may be referenced in wrapped exceptions should implement
Serializable so that marshalling will not fail.

An OptimisticLockException always causes the transaction to be marked for rollback.

Refreshing objects or reloading objects in a new transaction context and then retrying the transaction is a potential
response to an OptimisticLockException.

3.6. Entity Listeners and Callback Methods

A method may be designated as a lifecycle callback method to receive notification of entity lifecycle events. A lifecycle
callback method can be defined on an entity class, a mapped superclass, or an entity listener class associated with an
entity or mapped superclass. An entity listener class is a class whose methods are invoked in response to lifecycle
events on an entity. Any number of entity listener classes can be defined for an entity class or mapped superclass.

Default entity listeners—entity listener classes whose callback methods apply to all entities in the persistence unit—can
be specified by means of the XML descriptor.

Lifecycle callback methods and entity listener classes are defined by means of metadata annotations or the XML
descriptor. When annotations are used, one or more entity listener classes are denoted using the EntityListeners
annotation on the entity class or mapped superclass. If multiple entity listeners are defined, the order in which they are
invoked is determined by the order in which they are specified in the EntitylListeners annotation. The XML descriptor
may be used as an alternative to specify the invocation order of entity listeners or to override the order specified in

54

metadata annotations.

Any subset or combination of annotations may be specified on an entity class, mapped superclass, or listener class. A
single class must not have more than one lifecycle callback method for the same lifecycle event. The same method may
be used for multiple callback events.

Multiple entity classes and mapped superclasses in an inheritance hierarchy may define listener classes and/or
lifecycle callback methods directly on the class. Section 3.6.4 describes the rules that apply to method invocation order
in this case.

3.6.1. Entity Listeners

The entity listener class must have a public no-arg constructor.

Entity listener classes in Jakarta EE environments support dependency injection through the Contexts and Dependency
Injection API (CDI) [7] when CDI is enabled™”. An entity listener class that makes use of CDI injection may also define
lifecycle callback methods annotated with the PostConstruct and PreDestroy annotations. These methods will be invoked
after injection has taken place and before the entity listener instance is destroyed respectively.

The persistence provider is responsible for using the CDI SPI to create instances of the entity listener class; to perform
injection upon such instances; to invoke their PostConstruct and PreDestroy methods, if any; and to dispose of the entity
listener instances.

The persistence provider is only required to support CDI injection into entity listeners in Jakarta EE container
environments'"®, If the CDI is not enabled, the persistence provider must not invoke entity listeners that depend upon
CDI injection.

An entity listener is a noncontextual object. In supporting injection into entity listeners, the persistence provider must
behave as if it carries out the following steps involving the use of the CDI SPI. (See [7]).

e Obtain a BeanManager instance. (See Section 9.1)

* Create an AnnotatedType instance for the entity listener class.

* Create an InjectionTarget instance for the annotated type.

* Create a CreationalContext.

 Instantiate the listener by calling the InjectionTarget produce method.

¢ Inject the listener instance by calling the InjectionTarget inject method on the instance.

 Invoke the PostConstruct callback, if any, by calling the InjectionTarget postConstruct method on the instance.

When the listener instance is to be destroyed, the persistence provider must behave as if it carries out the following
steps.

e Call the InjectionTarget preDestroy method on the instance.
e Call the InjectionTarget dispose method on the instance

* Call the CreationalContext release method.

Persistence providers may optimize the steps above, e.g. by avoiding calls to the actual CDI SPI and relying on
container-specific interfaces instead, as long as the outcome is the same.

Entity listeners that do not make use of CDI injection are stateless. The lifecycle of such entity listeners is unspecified.

When invoked from within a Jakarta EE environment, the callback listeners for an entity share the enterprise naming
context of the invoking component, and the entity callback methods are invoked in the transaction and security
contexts of the calling component at the time at which the callback method is invoked. ™

55

3.6.2. Lifecycle Callback Methods

Entity lifecycle callback methods can be defined on an entity listener class and/or directly on an entity class or mapped
superclass.

A lifecycle callback method must be either:

* annotated with annotations designating the callback events for which it is invoked, or

* mapped to a callback event type using the XML descriptor.
The same annotations (and XML elements) are used to declare:

* callback methods of an entity class or mapped superclass, and

« callback methods of an entity listener class.
The signatures of the callback methods differ between these two cases:

¢ a callback method defined by an entity class or mapped superclass has the signature:

void <METHOD>()

¢ a callback method defined by an entity listener class has the signature:

void <METHOD>(S)

where S is any supertype of the entity class or mapped superclass to which the entity listener is applied. At runtime,
the argument to the entity listener callback method is the entity instance for which the callback method is being
invoked.

Callback methods can have public, private, protected, or package level access, but must not be static or final.
The following annotations designate lifecycle event callback methods of the corresponding types.

* PrePersist
* PostPersist
* PreRemove

* PostRemove
e PreUpdate

* PostUpdate
* Postload

The following rules apply to lifecycle callback methods:

« Lifecycle callback methods may throw unchecked/runtime exceptions. A runtime exception thrown by a callback
method that executes within a transaction causes that transaction to be marked for rollback if the persistence
context is joined to the transaction.

* Lifecycle callbacks can invoke JNDI, JDBC, JMS, and enterprise beans.
 Alifecycle callback method may modify the non-relationship state of the entity on which it is invoked.

 In general, the lifecycle method of a portable application should not invoke EntityManager or query operations, access

other entity instances, or modify relationships within the same persistence context™”,

56

3.6.3. Semantics of the Life Cycle Callback Methods for Entities

The PrePersist and PreRemove callback methods are invoked for a given entity before the respective EntityManager
persist and remove operations for that entity are executed. For entities to which the merge operation has been applied
and causes the creation of newly managed instances, the PrePersist callback methods will be invoked for the managed
instance after the entity state has been copied to it. These PrePersist and PreRemove callbacks will also be invoked on all
entities to which these operations are cascaded. The PrePersist and PreRemove methods will always be invoked as part of
the synchronous persist, merge, and remove operations. Primary key values generated using the SEQUENCE, TABLE, or UUID
strategy are available in the PrePersist method. Primary key values generated using the IDENTITY strategy are not
available in the PrePersist method.

The PostPersist and PostRemove callback methods are invoked for an entity after the entity has been made persistent or
removed. These callbacks will also be invoked on all entities to which these operations are cascaded. The PostPersist
and PostRemove methods will be invoked after the database insert and delete operations respectively. These database
operations may occur directly after the persist, merge, or remove operations have been invoked or they may occur
directly after a flush operation has occurred (which may be at the end of the transaction). Generated primary key
values are always available in the PostPersist method.

The PreUpdate and PostUpdate callbacks occur before and after the database update operations to entity data respectively.
These database operations may occur at the time the entity state is updated or they may occur at the time state is
flushed to the database (which may be at the end of the transaction).

e Note that it is implementation-dependent as to whether PreUpdate and PostUpdate callbacks occur when
an entity is persisted and subsequently modified in a single transaction or when an entity is modified
and subsequently removed within a single transaction. Portable applications should not rely on such
behavior.

The PostLoad method for an entity is invoked after the entity has been loaded into the current persistence context from
the database or after the refresh operation has been applied to it. The PostLoad method is invoked before a query result
is returned or accessed or before an association is traversed.

It is implementation-dependent as to whether callback methods are invoked before or after the cascading of the
lifecycle events to related entities. Applications should not depend on this ordering.

For example:

(com.acme.AlertMonitor.class)

public class Account {

Long accountld;

Integer balance;

boolean preferred;

public Long getAccountId() { ... }

/] ...

public Integer getBalance() { ... }

/] ...

// because status depends upon non-persistent context
public boolean isPreferred() { ... }

/] ..

57

public void deposit(Integer amount) { ... }

public Integer withdraw(Integer amount) throws NSFException { ... }

protected void validateCreate() {
if (getBalance() < MIN_REQUIRED_BALANCE)
throw new AccountException("Insufficient balance to open an account");

protected void adjustPreferredStatus() {
preferred = (getBalance() >= AccountManager.getPreferredStatusLevel());
}
}

public class AlertMonitor {

public void newAccountAlert(Account acct) {
Alerts.sendMarketingInfo(acct.getAccountId(), acct.getBalance());
}

3.6.4. Multiple Lifecycle Callback Methods for an Entity Lifecycle Event

If multiple callback methods are defined for an entity lifecycle event, the ordering of the invocation of these methods is
as follows.

Default listeners, if any, are invoked first, in the order specified in the XML descriptor. Default listeners apply to all
entities in the persistence unit, unless explicitly excluded by means of the ExcludeDefaultListeners annotation or exclude-
default-listeners XML element.

The lifecycle callback methods defined on the entity listener classes for an entity class or mapped superclass are
invoked in the same order as the specification of the entity listener classes in the EntityListeners annotation.

If multiple classes in an inheritance hierarchy—entity classes and/or mapped superclasses—define entity listeners, the
listeners defined for a superclass are invoked before the listeners defined for its subclasses in this order. The
ExcludeSuperclassListeners annotation or exclude-superclass-listeners XML element may be applied to an entity class or
mapped superclass to exclude the invocation of the listeners defined by the entity listener classes for the superclasses
of the entity or mapped superclass. The excluded listeners are excluded from the class to which the
ExcludeSuperclassListeners annotation or element has been specified and its subclasses®". The ExcludeSuperclassListeners
annotation (or exclude-superclass-listeners XML element) does not cause default entity listeners to be excluded from
invocation.

If a lifecycle callback method for the same lifecycle event is also specified on the entity class and/or one or more of its
entity or mapped superclasses, the callback methods on the entity class and/or superclasses are invoked after the other
lifecycle callback methods, most general superclass first. A class is permitted to override an inherited callback method
of the same callback type, and in this case, the overridden method is not invoked".

Callback methods are invoked by the persistence provider runtime in the order specified. If the callback method
execution terminates normally, the persistence provider runtime then invokes the next callback method, if any.

The XML descriptor may be used to override the lifecycle callback method invocation order specified in annotations.
For example:

There are several entity classes and listeners for animals:

38

public class Animal {

/] ...
@PostPersist
protected void postPersistAnimal() {
/...
}
}
@Entity

@EntitylListeners(PetListener.class)

public class Pet extends Animal {
/] ...

}

EEntity
eEntitylisteners({CatListener.class, CatlListener2.class})
public class Cat extends Pet {

/] ...
}
public class Petlistener {
@PostPersist
protected void postPersistPetListenerMethod(Object pet) {
/] ...
}
}
public class CatlListener {
@PostPersist
protected void postPersistCatListenerMethod(Object cat) {
/] ...
}
}
public class CatlListener2 {
@PostPersist
protected void postPersistCatListener2Method(Object cat) {
/] ...
ks

If a PostPersist event occurs on an instance of Cat, the following methods are called in order:

1. postPersistPetListenerMethod
2. postPersistCatListenerMethod
3. postPersistCatListener2Method

4. postPersistAnimal

Assume that Siamese(Cat is defined as a subclass of Cat:

@EntityListeners(SiameseCatListener.class)

@Entity
public class SiameseCat extends Cat {
/] ...
@PostPersist
protected void postPersistSiameseCat() {
/] ...
}
}

public class SiameseCatListener {

protected void postPersistSiameseCatListenerMethod(Object cat) {
/] ...
b

If a PostPersist event occurs on an instance of SiameseCat, the following methods are called in order:

. postPersistPetListenerMethod

. postPersistCatListenerMethod

. postPersistCatListener2Method

. postPersistSiameseCatListenerMethod

. postPersistAnimal

(=2 IS B LR S

. postPersistSiameseCat

Assume the definition of SiameseCat were instead:

(SiameseCatListener.class)

public class SiameseCat extends Cat {
/] ...

protected void postPersistAnimal() {
/] ...
}

In this case, the following methods would be called in order, where postPersistAnimal is the PostPersist method defined
in the SiameseCat class:

1. postPersistPetListenerMethod
2. postPersistCatListenerMethod
3. postPersistCatListener2Method
4. postPersistSiameseCatListenerMethod

5. postPersistAnimal

3.6.5. Exceptions

Lifecycle callback methods may throw runtime exceptions. A runtime exception thrown by a callback method that
executes within a transaction causes that transaction to be marked for rollback if the persistence context is joined to
the transaction. No further lifecycle callback methods will be invoked after a runtime exception is thrown.

3.6.6. Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor

The XML descriptor can be used as an alternative to metadata annotations to specify entity listener classes and their
binding to entities or to override the invocation order of lifecycle callback methods as specified in annotations.

3.6.6.1. Specification of Callback Listeners

The entity-listener XML descriptor element is used to specify the lifecycle listener methods of an entity listener class.
The lifecycle listener methods are specified by using the pre-persist, post-persist, pre-remove, post-remove, pre-update,
post-update, and/or post-load elements.

60

An entity listener class can define multiple callback methods. However, at most one method of an entity listener class
can be designated as a pre-persist method, post-persist method, pre-remove method, post-remove method, pre-update
method, post-update method, and/or post-load method, regardless of whether the XML descriptor is used to define
entity listeners or whether some combination of annotations and XML descriptor elements is used.

3.6.6.2. Specification of the Binding of Entity Listener Classes to Entities

The entity-listeners subelement of the persistence-unit-defaults element is used to specify the default entity listeners
for the persistence unit.

The entity-listeners subelement of the entity or mapped-superclass element is used to specify the entity listener classes
for the respective entity or mapped superclass and its subclasses.

The binding of entity listeners to entity classes is additive. The entity listener classes bound to the superclasses of an
entity or mapped superclass are applied to it as well.

The exclude-superclass-listeners element specifies that the listener methods for superclasses are not to be invoked for
an entity class (or mapped superclass) and its subclasses.

The exclude-default-listeners element specifies that default entity listeners are not to be invoked for an entity class (or
mapped superclass) and its subclasses.

Explicitly listing an excluded default or superclass listener for a given entity class or mapped superclass causes it to be
applied to that entity or mapped superclass and its subclasses.

In the case of multiple callback methods for a single lifecycle event, the invocation order rules described in Section
3.6.4 apply.

3.7. Bean Validation

This specification defines support for use of Bean Validation [5] within Jakarta Persistence applications.

Managed classes (entities, mapped superclasses, and embeddable classes) may be configured to include Bean Validation
constraints.

Automatic validation using these constraints is achieved by specifying that Jakarta Persistence delegate validation to
the Bean Validation implementation upon the pre-persist, pre-update, and pre-remove entity lifecycle events described
in Section 3.6.3.

Validation can also be achieved by the application calling the validate method of a Validator instance upon an instance
of a managed class, as described in the Bean Validation specification [5].

3.7.1. Automatic Validation Upon Lifecycle Events

This specification supports the use of bean validation for the automatic validation of entities upon the pre-persist, pre-
update, and pre-remove lifecycle validation events. These lifecycle validation events occur immediately after the point
at which all the PrePersist, PreUpdate, and PreRemove lifecycle callback method invocations respectively have been
completed, or immediately after the point at which such lifecycle callback methods would have been completed (in the
event that such callback methods are not present).

e In the case where an entity is persisted and subsequently modified in a single transaction or when an
entity is modified and subsequently removed in a single transaction, it is implementation dependent as
to whether the pre-update validation event occurs. Portable applications should not rely on this
behavior.

61

3.7.1.1. Enabling Automatic Validation

The validation-mode element of the persistence.xml file determines whether the automatic lifecycle event validation is in
effect. The values of the validation-mode element are AUTO, CALLBACK, NONE. The default validation mode is AUTO.

If the application creates the entity manager factory using the Persistence.createEntityManagerFactory method, the
validation mode can be specified using the jakarta.persistence.validation.mode map key, which will override the value

mon

specified (or defaulted) in the persistence.xml file. The map values for this key are "auto”, "callback”, "none".

If the auto validation mode is specified by the validation-mode element or the jakarta.persistence.validation.mode
property, or if neither the validation-mode element nor the jakarta.persistence.validation.mode property is specified, and
a Bean Validation provider is present in the environment, the persistence provider must perform the automatic
validation of entities as described in Section 3.7.1.2. If no Bean Validation provider is present in the environment, no
lifecycle event validation takes place.

If the callback validation mode is specified by the validation-mode element or the jakarta.persistence.validation.mode
property, the persistence provider must perform the lifecycle event validation as described in Section 3.7.1.2. It is an
error if there is no Bean Validation provider present in the environment, and the provider must throw the
PersistenceException if the jakarta.persistence.validation.mode property value "callback” has been passed to the

Persistence.createEntityManagerFactory method.

If the none validation mode is specified by the validation-mode element or the jakarta.persistence.validation.mode
property, the persistence provider must not perform lifecycle event validation.

3.7.1.2. Requirements for Automatic Validation upon Lifecycle Events

For each event type, a list of groups is targeted for validation. By default, the default Bean Validation group (the group
Default) will be validated upon the pre-persist and pre-update lifecycle validation events, and no group will be
validated upon the pre-remove event.

This default validation behavior can be overridden by specifying the target groups using the following validation
properties in the persistence.xml file or by passing these properties in the configuration of the entity manager factory
through the createEntityManagerFactory method:

e jakarta.persistence.validation.group.pre-persist
* jakarta.persistence.validation.group.pre-update

* jakarta.persistence.validation.group.pre-remove

The value of a validation property must be a list of the targeted groups. A targeted group must be specified by its fully
qualified class name. Names must be separated by a comma.

When one of the above events occurs for an entity, the persistence provider must validate that entity by obtaining a
Validator instance from the validator factory in use (see Section 3.7.2) and invoking its validate method with the
targeted groups. If the list of targeted groups is empty, no validation is performed. If the set of ConstraintViolation
objects returned by the validate method is not empty, the persistence provider must throw the
jakarta.validation.ConstraintViolationException containing a reference to the returned set of ConstraintViolation objects,
and must mark the transaction for rollback if the persistence context is joined to the transaction.

The validator instance that is used for automatic validation upon lifecycle events must use a TraversableResolver that
has the following behavior:

» Attributes that have not been loaded must not be loaded.

 Validation cascade (@Valid) must not occur for entity associations (single- or multi-valued).

62

These requirements guarantee that no unloaded attribute or association will be loaded by side effect and that no entity
will be validated more than once during a given flush cycle.

Embeddable attributes must be validated only if the Valid annotation has been specified on them.

It is the responsibility of the persistence provider to pass an instance implementing the
jakarta.validation.TraversableResolver interface to the Bean Validation provider by calling
ValidatorFactory.usingContext().traversableResolver(tr).getValidator() where tr is the resolver having the behavior
described above.

3.7.2. Providing the ValidatorFactory

In Jakarta EE environments, a ValidatorFactory instance is made available by the Jakarta EE container. The container is
responsible for passing this validator factory to the persistence provider via the map that is passed as an argument to
the createContainerEntityManagerFactory call. The map key used by the container must be the standard property name

jakarta.persistence.validation.factory.

In Java SE environments, the application can pass the ValidatorFactory instance via the map that is passed as an
argument to the Persistence.createEntityManagerFactory call. The map key used must be the standard property name
jakarta.persistence.validation.factory. If no ValidatorFactory instance is provided by the application, and if a Bean
Validation provider is present in the classpath, the persistence provider must instantiate the ValidatorFactory using the
default bootstrapping approach defined by the Bean Validation specification [5], namely
Validation.buildDefaultValidatorFactory().

3.8. Entity Graphs

An entity graph is a template that captures the path and boundaries for an operation or query. It is defined in the form
of metadata or an object created by the dynamic EntityGraph APL

Entity graphs are used in the specification of “fetch plans” for query or find operations.

The EntityGraph, AttributeNode, and Subgraph interfaces found in Appendix B are used to dynamically construct entity
graphs.

The annotations NamedEntityGraph, NamedAttributeNode, and NamedSubgraph described in Section 10.3 are used to statically
define entity graphs. The named-entity-graph XML element and its subelements may be used to override these
annotations or to define additional named entity graphs.

The semantics of entity graphs with regard to find and query operations are described in Section 3.8.1.

3.8.1. Use of Entity Graphs in find and query operations

An entity graph can be used with the find method or as a query hint to override or augment FetchType semantics.

The standard properties jakarta.persistence.fetchgraph and jakarta.persistence.loadgraph are used to specify such
graphs to queries and find operations.

The default fetch graph for an entity or embeddable is defined to consist of the transitive closure of all of its attributes
that are specified as FetchType.EAGER (or defaulted as such).

The persistence provider is permitted to fetch additional entity state beyond that specified by a fetch graph or load
graph. It is required, however, that the persistence provider fetch all state specified by the fetch or load graph.

63

3.8.1.1. Fetch Graph Semantics

When the jakarta.persistence.fetchgraph property is used to specify an entity graph, attributes that are specified by
attribute nodes of the entity graph are treated as FetchType.EAGER and attributes that are not specified are treated as
FetchType.LAZY

The following rules apply, depending on attribute type. The rules of this section are applied recursively.

A primary key or version attribute never needs to be specified in an attribute node of a fetch graph. (This applies to
composite primary keys as well, including embedded id primary keys.) When an entity is fetched, its primary key and
version attributes are always fetched. It is not incorrect, however, to specify primary key attributes or version
attributes.

Attributes other than primary key and version attributes are assumed not to be fetched unless the attribute is specified.
The following rules apply to the specification of attributes.

« If the attribute is an embedded attribute, and the attribute is specified in an attribute node, but a subgraph is not
specified for the attribute, the default fetch graph for the embeddable is fetched. If a subgraph is specified for the
attribute, the attributes of the embeddable are fetched according to their specification in the corresponding
subgraph.

« If the attribute is an element collection of basic type, and the attribute is specified in an attribute node, the element
collection together with its basic elements is fetched.

« If the attribute is an element collection of embeddables, and the attribute is specified in an attribute node, but a
subgraph is not specified for the attribute, the element collection together with the default fetch graph of its
embeddable elements is fetched. If a subgraph is specified for the attribute, the attributes of the embeddable
elements are fetched according to the corresponding subgraph specification.

« If the attribute is a one-to-one or many-to-one relationship, and the attribute is specified in an attribute node, but a
subgraph is not specified for the attribute, the default fetch graph of the target entity is fetched. If a subgraph is
specified for the attribute, the attributes of the target entity are fetched according to the corresponding subgraph
specification.

« If the attribute is a one-to-many or many-to-many relationship, and the attribute is specified in an attribute node,
but a subgraph is not specified, the collection is fetched and the default fetch graphs of the referenced entities are
fetched. If a subgraph is specified for the attribute, the entities in the collection are fetched according to the
corresponding subgraph specification.

« If the key of a map which has been specified in an attribute node is a basic type, it is fetched. If the key of a map
which has been specified in an attribute node is an embedded type, the default fetch graph is fetched for the
embeddable. Otherwise, if the key of the map is an entity, and a map key subgraph is not specified for the attribute
node, the map key is fetched according to its default fetch graph. If a key subgraph is specified for the map key
attribute, the map key attribute is fetched according to the map key subgraph specification.

Examples:

public class Phonenumber {
protected String number;
protected PhoneTypeEnum type;

/] ...

In the above example, only the number attribute would be eagerly fetched.

64

@NamedEntityGraph(
attributeNodes={@NamedAttributelNode("projects")}
)
@Entity
public class Employee {
@Id
@GeneratedValue
protected long id;

@Basic
protected String name;

@Basic
protected String employeeNumber;

@0neToMany()
protected List<Dependents> dependents;

@0neToMany()
protected List<Project> projects;

@0neToMany()
protected List<PhoneNumber> phoneNumbers;

/] ...
}

EEntity

@Inheritance

public class Project {
@Id
@GeneratedValue
protected long id;

String name;

@0neToOne(fetch=FetchType.EAGER)
protected Requirements doc;

/] ...
}

@Entity

public class LargeProject extends Project {
@0neToOne(fetch=FetchType.LAZY)
protected Employee approver;

/] ...

}

@Entity

public class Requirements {
@Id
protected long id;
@Lob
protected String description;
@0neToOne(fetch=FetchType.LAZY)
protected Approval approval
/] ...

}

In the above example, the Employee entity’s primary key will be fetched as well as the related Project instances, whose

65

default fetch graph (id, name, and doc attributes) will be fetched. The related Requirements object will be fetched according
to its default fetch graph.

If the approver attribute of LargeProject were FetchType.EAGER, and if any of the projects were instances of LargeProject,

their approver attributes would also be fetched. Since the type of the approver attribute is Employee, the approver’s default

fetch graph (id, name, and employeeNumber attributes) would also be fetched.

3.8.1.2. Load Graph Semantics

When the jakarta.persistence.loadgraph property is used to specify an entity graph, attributes that are specified by

attribute nodes of the entity graph are treated as FetchType.EAGER and attributes that are not specified are treated

according to their specified or default FetchType.

The following rules apply. The rules of this section are applied recursively.

A primary key or version attribute never needs to be specified in an attribute node of a load graph. (This applies to
composite primary keys as well, including embedded id primary keys.) When an entity is fetched, its primary key
and version attributes are always fetched. It is not incorrect, however, to specify primary key attributes or version
attributes.

If the attribute is an embedded attribute, and the attribute is specified in an attribute node, but a subgraph is not
specified for the attribute, the default fetch graph for the embeddable is fetched. If a subgraph is specified for the
attribute, attributes that are specified by the subgraph are also fetched.

If the attribute is an element collection of basic type, and the attribute is specified in an attribute node, the element
collection together with its basic elements is fetched.

If the attribute is an element collection of embeddables, and the attribute is specified in an attribute node, the
element collection together with the default fetch graph of its embeddable elements is fetched. If a subgraph is
specified for the attribute, attributes that are specified by the subgraph are also fetched.

If the attribute is a one-to-one or many-to-one relationship, and the attribute is specified in an attribute node, the
default fetch graph of the target entity is fetched. If a subgraph is specified for the attribute, attributes that are
specified by the subgraph are also fetched.

If the attribute is a one-to-many or many-to-many relationship, and the attribute is specified in an attribute node,
the collection is fetched and the default fetch graphs of the referenced entities are fetched. If a subgraph is specified
for the attribute, attributes that are specified by the subgraph are also fetched.

If the key of a map which has been specified in an attribute node is a basic type, it is fetched. If the key of a map
which has been specified in an attribute node is an embedded type, the default fetch graph is fetched for the
embeddable. Otherwise, if the key of the map is an entity, the map key is fetched according to its default fetch graph.
If a key subgraph is specified for the map key attribute, additional attributes are fetched as specified in the key
subgraph.

Examples:

public class Phonenumber {
protected String number;
protected PhoneTypeEnum type;

/] ...

In the above example, the number and type attributes are fetched.

66

@NamedEntityGraph(
attributeNodes={@NamedAttributelNode("projects")}
)
@Entity
public class Employee {
@Id
@GeneratedValue
protected long id;

@Basic
protected String name;

@Basic
protected String employeeNumber;

@0neToMany()
protected List<Dependents> dependents;

@0neToMany()
protected List<Project> projects;

@0neToMany()
protected List<PhoneNumber> phoneNumbers;

/] ...
}

EEntity

@Inheritance

public class Project {
@Id
@GeneratedValue
protected long id;

String name;

@0neToOne(fetch=FetchType.EAGER)
protected Requirements doc;

/] ...
}

@Entity

public class LargeProject extends Project {
@0neToOne(fetch=FetchType.LAZY)
protected Employee approver;

/] ...

}

@Entity

public class Requirements {
@Id
protected long id;
@Lob
protected String description;
@0neToOne(fetch=FetchType.LAZY)
protected Approval approval
/] ...

}

In the above example, the default fetch graph (id, name, employeeNumber attributes) of Employee is fetched. The default fetch

67

graphs of the related Project instances (id, name, and doc attributes) and their Requirements instances (id and description
attributes) are also fetched.

3.9. Type Conversion of Basic Attributes

The attribute conversion facility allows the developer to define custom attribute converters. A converter is a class whose
methods convert between:

« the target type of the converter, an arbitrary Java type which may be used as the type of a persistent field or
property, and

¢ a basic type (see Section 2.6) used as an intermediate step in mapping to the database representation.

A converter can be used to convert attributes defined by entity classes, mapped superclasses, or embeddable
classes.™ A converted attribute is considered a basic attribute, since, with the aid of the converter, its values can be
represented as instances of a basic type.

Every attribute converter class must implement the interface jakarta.persistence.AttributeConverter and must be
annotated with the Converter annotation or declared as a converter in the XML descriptor. If the value of the autoApply
element of the Converter annotation is true, the converter is automatically applied to all attributes of the target type,
including to basic attribute values that are contained within other, more complex attribute types. See Section 10.6.

/**

Interface implemented by custom attribute converters. A

converter is a class whose methods convert between:

the target type of the converter, an arbitrary Java
type which may be used as the type of a persistent field or
property, and

a {@linkplain Basic basic type} used as an intermediate step
in mapping to the database representation.

<p>A converted field or property is considered {@link Basic}, since,
with the aid of the converter, its values can be represented as
instances of a basic type.

<p>A converter class must be annotated {@link Converter} or declared
as a converter in the object/relational mapping descriptor. The value
of {@link Converter#autoApply autoApply} determines if the converter
is automatically applied to persistent fields and properties of the
target type. The {@link Convert} annotation may be used to apply a
converter which is declared {@code autoApply=false}, to explicitly
{@linkplain Convert#disableConversion disable conversion}, or to
resolve ambiguities when multiple converters would otherwise apply.

<p>Note that the target type {@code X} and the converted basic type
{@code Y} may be the same Java type.

@param <X> the target type, that is, the type of the entity attribute
@param <Y> a basic type representing the type of the database column

@see Converter
@see Convert#iconverter

L T R T N T R R R R T R R R N N T

*
/
public interface AttributeConverter<X,Y> {

* Converts the value stored in the entity attribute into the
* data representation to be stored in the database.
*
*

@param attribute the entity attribute value to be converted

68

* @return the converted data to be stored in the database column
*/

Y convertToDatabaseColumn(X attribute);

/*k*

* Converts the data stored in the database column into the value
* to be stored in the entity attribute.

* <p>Note that it is the responsibility of the converter writer

* to specify the correct {@code dbData} type for the corresponding
* column for use by the JDBC driver: i.e., persistence providers
* are not expected to do such type conversion.

* @param dbData the data from the database column to be converted
* @return the converted value to be stored in the entity attribute
*/

X convertToEntityAttribute(Y dbData);

Attribute converter classes in Jakarta EE environments support dependency injection through the Contexts and
Dependency Injection API (CDI) [7] when CDI is enabled™. An attribute converter class that makes use of CDI injection
may also define lifecycle callback methods annotated with the PostConstruct and PreDestroy annotations. These methods
will be invoked after injection has taken place and before the attribute converter instance is destroyed respectively.

The persistence provider is responsible for using the CDI SPI to create instances of the attribute converter class; to
perform injection upon such instances; to invoke their PostConstruct and PreDestroy methods, if any; and to dispose of
the attribute converter instances.

The persistence provider is only required to support CDI injection into attribute converters in Jakarta EE container
environments'™, If CDI is not enabled, the persistence provider must not invoke attribute converters that depend upon
CDI injection.

An attribute converter is a noncontextual object. In supporting injection into attribute converters, the persistence
provider must behave as if it carries out the following steps involving the use of the CDI SPI. (See [7]).

e Obtain a BeanManager instance. (See Section 9.1.)

e Create an AnnotatedType instance for the attribute converter class.
* Create an InjectionTarget instance for the annotated type.

* Create a CreationalContext.

 Instantiate the listener by calling the InjectionTarget produce method.

Inject the listener instance by calling the InjectionTarget inject method on the instance.

Invoke the PostConstruct callback, if any, by calling the InjectionTarget postConstruct method on the instance.

When the listener instance is to be destroyed, the persistence provider must behave as if it carries out the following
steps.

e Call the InjectionTarget preDestroy method on the instance.
e Call the InjectionTarget dispose method on the instance.

» Call the CreationalContext release method.

Persistence providers may optimize the steps above, e.g. by avoiding calls to the actual CDI SPI and relying on
container-specific interfaces instead, as long as the outcome is the same.

Attribute converters that do not make use of CDI injection are stateless. The lifecycle of such attribute converters is
unspecified.

The conversion of all basic types is supported except for the following: Id attributes (including the attributes of

69

embedded ids and derived identities), version attributes, relationship attributes, and attributes explicitly annotated as
Enumerated or Temporal or designated as such in the XML descriptor. Auto-apply converters will not be applied to such
attributes, and applications that apply converters to such attributes through use of the Convert annotation will not be
portable.

Type conversion may be specified at the level of individual attributes by means of the Convert annotation. The Convert
annotation may also be used to override or disable an auto-apply conversion. See Section 11.1.10.

The Convert annotation may be applied directly to an attribute of an entity, mapped superclass, or embeddable class to
specify conversion of the attribute or to override the use of a converter that has been specified as autoApply=true. When
persistent properties are used, the Convert annotation is applied to the getter method.

The Convert annotation may be applied to an entity that extends a mapped superclass to specify or override the
conversion mapping for an inherited basic or embedded attribute.

The persistence provider runtime is responsible for invoking the specified conversion methods for the target attribute
type when loading the entity attribute from the database and before storing the entity attribute state to the database.
The persistence provider must apply any conversion methods to instances of attribute values in path expressions used
within Jakarta Persistence query language queries or criteria queries (such as in comparisons, bulk updates, etc.)
before sending them to the database for the query execution. When such converted attributes are used in comparison
operations with literals or parameters, the value of the literal or parameter to which they are compared must also be
converted. If the result of a Jakarta Persistence query language query or criteria query includes one or more entity
attributes for which conversion mappings have been specified, the persistence provider must apply the specified
conversions to the corresponding values in the query result before returning them to the application. The use of
functions, including aggregates, on converted attributes is undefined. If an exception is thrown from a conversion
method, the persistence provider must wrap the exception in a PersistenceException and, if the persistence context is
joined to a transaction, mark the transaction for rollback.

3.10. Second-Level Cache

A persistence provider may support the use of a second-level cache, that is, it might have a way to store data read in one
persistence context for use in subsequent persistence contexts. A second-level cache might enhance performance, but
tends to undermine the semantics of transaction processing, possibly exposing the application to stale data or similar
anomalies.

Access to the second-level cache, if enabled, is mediated via the persistence context, and is largely transparent to the
application. As an exception, the Cache interface described below in Section 3.10.3 allows the application to directly
evict data from the second-level cache.

The persistence provider is not required to support use of a second-level cache.

3.10.1. The Shared Cache Mode and Cacheable Annotation

Whether a given entity is eligible for storage in the second level cache is determined by:

* the annotations of the entity class, and

* the value specified for the shared-cache-mode element of the persistence.xml file or by the configuration property

jakarta.persistence.sharedCache.mode.

The value of the property jakarta.persistence.sharedCache.mode takes precedence over the value of the shared-cache-mode
element.

The shared-cache-mode element takes one of five possible values, which are enumerated by

70

jakarta.persistence.SharedCacheMode:

* ALL specifies that every entity and all its state may be cached.

* NONE specifies that caching is disabled for the persistence unit, and that the persistence provider must not cache any
entity data.

o ENABLE_SELECTIVE specifies that an entity may be cached if the entity class is explicitly annotated @Cacheable or
@Cacheable(true), or if the equivalent setting is specified in XML.

o DISABLE_SELECTIVE specifies that an entity may be cached unless the entity class is explicitly annotated
@Cacheable(false), or unless the equivalent setting is specified in XML.

 UNSPECIFIED selects the provider-specific default behavior.

If neither the shared-cache-mode element nor the property jakarta.persistence.sharedCache.mode is specified, or if the
specified value is UNSPECIFIED, the behavior is not defined, and provider-specific defaults may apply. In particular, the
semantics of the Cacheable annotation (and XML equivalent) is undefined.

If the persistence provider does not support use of a second-level cache, or if a second-level cache is not installed or not
enabled, this setting may be ignored and no caching will occur.

A persistence provider may support additional vendor-specific mechanisms for configuring the cache and marking
entities eligible (or not) for storage in the second-level cache. However, if a second-level cache is supported, and
enabled, the provider must respect the configuration options defined in this section, if specified by the application.

3.10.2. Cache Modes

The cache retrieve mode and cache store mode control how a given persistence context by interacts with the second-
level cache.

* The cache retrieve mode may be set by calling setCacheRetrieveMode() on EntityManager or Query.
o The cache store mode may be set by calling setCacheStoreMode() on EntityManager or Query.

* A cache store mode or cache retrieve mode, or both, may be passed to the find() method of EntityManager as a
FindOption.

* A cache store mode may be passed to the refresh() method of EntityManager as a RefreshOption.

A cache mode specified for a given Query instance applies only to executions of that query, but takes precedence over
the current cache mode of the EntityManager to which the Query belongs. A cache mode passed to find() or refresh()
applies only to the method invocation, and takes precedence over the current cache mode of the EntityManager.

Alternatively, a cache mode may be specified using the property name jakarta.persistence.cache.retrieveMode or

jakarta.persistence.cache.storeMode by:

o calling the setProperty() method of EntityManager,
o calling the setHint() method of Query, or

¢ passing a map containing one of these properties to find() or refresh().

If second-level caching is not enabled (for example, if the shared-cache-mode element is set to NONE), cache modes must be
ignored. Similarly, if a given entity is not eligible for storage in the second-level cache (for example, if the shared-cache-
mode element is set to ENABLE_SELECTIVE, and the entity is not annotated @Cacheable), cache modes are ignored for
operations applying to that entity.

Cache modes must be respected when caching is enabled, regardless of whether caching is enabled via the
configuration options defined by this specification or via provider-specific mechanisms.

Applications which depend on the cache retrieve mode or cache store mode but which do not specify the shared-cache-

71

mode element are not portable.

CacheRetrieveMode enumerates the cache retrieve modes recognized by this specification. The semantics of each mode is
defined by its Javadoc.

/**

Specifies how the {@link EntityManager} interacts with the

second-level cache when data is read from the database via

the {@link EntityManager#find} methods and execution of

queries.

{elink #USE} indicates that data may be read from the
second-level cache.

{@elink #BYPASS} indicates that data may not be read
from the second-level cache.

<p>Enumerates legal values of the property
{@code jakarta.persistence.cache.retrieveMode}.

@see EntityManager#setCacheRetrieveMode(CacheRetrievelode)
@see Query#setCacheRetrieveMode(CacheRetrieveMode)

L T B T R R S T

@since 2.0
*/
public enum CacheRetrieveMode implements FindOption {

/**

* Read entity data from the cache: this is the default
* behavior.

*/

USE,

/**

* Bypass the cache: get data directly from the database.
*/

BYPASS

CacheStoreMode enumerates the cache store modes recognized by this specification. The semantics of each mode is
defined by its Javadoc.

/**

Specifies how the {@link EntityManager} interacts with the

second-level cache when data is read from the database and

when data is written to the database.

{@elink #USE} indicates that data may be written to the
second-level cache.

{@elink #BYPASS} indicates that data may not be written
to the second-level cache.

{@link #REFRESH} indicates that data must be written
to the second-level cache, even when the data is already
cached.

<p>Enumerates legal values of the property
{@code jakarta.persistence.cache.storeMode}.

@see EntityManager#setCacheStoreMode(CacheStoreMode)
@see Query#setCacheStoreMode(CacheStoreMode)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

@since 2.0
*/

72

public enum CacheStoreMode implements FindOption, RefreshOption {

/*k*

* Insert entity data into cache when read from database and
* insert/update entity data when written to the database:
* this is the default behavior. Does not force refresh of
* 3already cached items when reading from database.

*/

USE,

/**

* Don't insert into cache.

*/

BYPASS,

/*k*k

* Insert/update entity data held in the cache when read from

* the database and when written to the database. Force refresh
* of cache for items read from database.

*/

REFRESH

3.10.3. Cache Interface

The Cache interface found in Section B.5 allows the application to request eviction of entity data from the second-level
cache directly and immediately, outside the scope of any persistence context.

3.11. Query APIs

The Query and TypedQuery APIs are used for the execution of both static queries and dynamic queries. These APIs also
support parameter binding and pagination control. The StoredProcedureQuery API is used for the execution of queries
that invoke stored procedures defined in the database.

These interfaces may be found in Appendix B.

3.11.1. Query Execution

Jakarta Persistence query language, Criteria API, and native SQL select queries are executed using the methods
getResultList, getSingleResult, and getSingleResultOrNull. Update and delete operations (update and delete “queries”) are
executed using the executeUpdate method.

» For TypedQuery instances, the query result type is determined in the case of criteria queries by the type of the query
specified when the CriteriaQuery object is created, as described in Section 6.3.1. In the case of Jakarta Persistence
query language queries, the type of the result is determined by the resultClass argument to the createQuery or
createNamedQuery method, and the select list of the query must contain only a single item which must be assignable to
the specified type.

* For Query instances, the elements of a query result whose select list consists of more than one select expression are
of type Object[]. If the select list consists of only one select expression, the elements of the query result are of type
Object. When native SQL queries are used, the SQL result set mapping (see Section 3.11.11), determines how many
items (entities, scalar values, etc.) are returned. If multiple items are returned, the elements of the query result are
of type Object[]. If only a single item is returned as a result of the SQL result set mapping or if a result class is
specified, the elements of the query result are of type Object.

Stored procedure queries can be executed using the getResultlList, getSingleResult, getSingleResultOrNull, and execute
methods. Stored procedures that perform only updates or deletes can be executed using the executeUpdate method.

73

Stored procedure query execution is described in detail in Section 3.11.12.3.

An I1legalArgumentException is thrown if a parameter instance is specified that does not correspond to a parameter of
the query, if a parameter name is specified that does not correspond to a named parameter of the query, if a positional
value is specified that does not correspond to a positional parameter of the query, or if the type of the parameter is not
valid for the query. This exception may be thrown when the parameter is bound, or the execution of the query may fail.
See Section 3.11.5, Section 3.11.6, and Section 3.11.7 for supported parameter usage.

The effect of applying setMaxResults or setFirstResult to a query involving fetch joins over collections is undefined. The
use of setMaxResults and setFirstResult is not supported for stored procedure queries.

Query and TypedQuery methods other than the executeUpdate method are not required to be invoked within a transaction
context, unless a lock mode other than LockModeType.NONE has been specified for the query. In particular, the
getResultlist, getSingleResult, and getSingleResultOrNull methods are not required to be invoked within a transaction
context unless such a lock mode has been specified for the query™. If an entity manager with transaction-scoped
persistence context is in use, the resulting entities will be detached; if an entity manager with an extended persistence
context is used, they will be managed. See Chapter 7 for further discussion of entity manager use outside a transaction
and persistence context types.

Whether a StoredProcedureQuery should be invoked in a transaction context should be determined by the transactional
semantics and/or requirements of the stored procedure implementation and the database in use. In particular,
problems may occur if the stored procedure initiates a transaction and a transaction is already in effect. The state of
any entities returned by the stored procedure query invocation is determined as decribed above.

Runtime exceptions other than the NoResultException, NonUniqueResultException, QueryTimeoutException, and
LockTimeoutException thrown by the methods of the Query, TypedQuery, and StoredProcedureQuery interfaces other than those
methods specified below cause the current transaction to be marked for rollback if the persistence context is joined to
the transaction. On database platforms on which a query timeout causes transaction rollback, the persistence provider
must throw the PersistenceException instead of the QueryTimeoutException.

Runtime exceptions thrown by the following methods of the Query, TypedQuery, and StoredProcedureQuery interfaces do not
cause the current transaction to be marked for rollback: getParameters, getParameter, getParameterValue,
getOutputParameterValue, getLockMode.

Runtime exceptions thrown by the methods of the Tuple, TupleElement, and Parameter interfaces do not cause the current
transaction to be marked for rollback.

For example:

public List findWithName(String name) {
return em.createQuery("SELECT ¢ FROM Customer ¢ WHERE c.name LIKE :custName")
.setParameter("custName", name)
.setMaxResults(10)
.getResultList();

3.11.2. Queries and Flush Mode

The flush mode setting affects the result of a query as follows.

When queries are executed within a transaction, if FlushModeType.AUTO is set on the Query, TypedQuery, or
StoredProcedureQuery object, or if the flush mode setting for the persistence context is AUTO (the default) and a flush mode
setting has not been specified for the query object, the persistence provider is responsible for ensuring that all updates
to the state of all entities in the persistence context which could potentially affect the result of the query are visible to
the processing of the query. The persistence provider implementation may achieve this by flushing those entities to the

74

database or by some other means. If FlushModeType.COMMIT is set, the effect of updates made to entities in the persistence
context upon queries is unspecified.

If the persistence context has not been joined to the current transaction, the persistence provider must not flush to the
database regardless of the flush mode setting.

/**

Enumerates flush modes recognized by the {@link EntityManager}.

<p>When queries are executed within a transaction, if {@link #AUTO}
is set on the {@link Query Query} or {@link TypedQuery} object, or

if the flush mode setting for the persistence context is {@code AUTO}
(the default) and a flush mode setting has not been specified for the
{@code Query} or {@code TypedQuery} object, the persistence provider
is responsible for ensuring that all updates to the state of all
entities in the persistence context which could potentially affect
the result of the query are visible to the processing of the query.
The persistence provider implementation may achieve this by flushing
updates to those entities to the database or by some other means.

<p>0n the other hand, if {@link #COMMIT} is set, the effect of updates
made to entities in the persistence context on queries is unspecified.

<p>If there is no transaction active or the persistence context is
not joined to the current transaction, the persistence provider must
not flush to the database.

@see EntityManager#setFlushMode(FlushModeType)
@see Query#setFlushMode(FlushModeType)

L T S T TR T R R T T T R N R N .

@since 1.0
*/
public enum FlushModeType {
/*k*
* Flushing to occur at transaction commit. The provider may flush
* at other times, but is not required to.
*/
COMMIT,
/**

* (Default) Flushing to occur at query execution.
*
/

AUTO

If there is no transaction active, the persistence provider must not flush to the database.

3.11.3. Queries and Lock Mode

The setLockMode method of the Query or TypedQuery interface or the lockMode element of the NamedQuery annotation may be
used to lock the results of a query. A lock is obtained for each entity specified in the query result (including entities

passed to constructors in the query SELECT clause).””

If the lock mode type is PESSIMISTIC_READ, PESSIMISTIC_WRITE, or PESSIMISTIC_FORCE_INCREMENT, and the query returns scalar
data (e.g., the values of entity field or properties, including scalar data passed to constructors in the query SELECT
clause), the underlying database rows will be locked”, but the version columns (if any) for any entities corresponding
to such scalar data will not be updated unless the entities themselves are also otherwise retrieved and updated.

If the lock mode type is OPTIMISTIC or OPTIMISTIC_FORCE_INCREMENT, and the query returns scalar data, any entities returned
by the query will be locked, but no locking will occur for scalar data that does not correspond to the state of any entity

75

instance in the query result.

If a lock mode other than NONE is specified for a query, the query must be executed within a transaction (and the
persistence context must be joined to the transaction) or the TransactionRequiredException will be thrown.

Locking is supported for Jakarta Persistence query language queries and criteria queries only. If the setLockMode or
getLockMode method is invoked on a query that is not a Jakarta Persistence query language select query or a criteria
query, the I1legalStateException may be thrown or the query execution will fail.

3.11.4. Query Hints
The following hint is defined by this specification for use in query configuration.

jakarta.persistence.query.timeout // time in milliseconds

This hint may:

* be passed to the setHint() method of the Query, TypedQuery, and StoredProcedureQuery interfaces found in Appendix B,
 used with the NamedQuery, NamedNativeQuery, and NamedStoredProcedureQuery annotations specified in Section 10.4,
* passed as a property to the createEntityManagerFactory() method of the Persistence class, as defined in Section 9.7, or

e used in the properties element of the persistence.xml file, as defined in Section 8.2.1.11.

The timeout specified by calling the createEntityManagerFactory() method, via the persistence.xml file, or in annotations,
serves as a default value which can be selectively overridden by calling the setHint() method.

Portable applications should not rely on this hint. Depending on the persistence provider and database in use, the hint
may or may not be observed.

Vendors are permitted to support the use of additional, vendor-specific hints. Vendor-specific hints must not use the

jakarta.persistence namespace. Vendor-specific hints must be ignored if they are not understood.

3.11.5. Parameter Objects

Parameter objects can be used for criteria queries and for Jakarta Persistence query language queries.

Implementations may support the use of Parameter objects for native queries, however support for Parameter objects
with native queries is not required by this specification. The use of Parameter objects for native queries will not be
portable. The mixing of parameter objects with named or positional parameters is invalid.

Portable applications should not attempt to reuse a Parameter object obtained from a Query or TypedQuery instance in the

context of a different Query or TypedQuery instance.

3.11.6. Named Parameters

Named parameters can be used for Jakarta Persistence query language queries, for criteria queries (although use of
Parameter objects is to be preferred), and for stored procedure queries that support named parameters.

Named parameters follow the rules for identifiers defined in Section 4.4.1. Named parameters are case-sensitive. The
mixing of named and positional parameters is invalid.

A named parameter of a Jakarta Persistence query language query is an identifier that is prefixed by the " : " symbol.
The parameter names passed to the setParameter methods of the Query and TypedQuery interfaces do not include this " : "
prefix.

76

3.11.7. Positional Parameters

Only positional parameter binding and positional access to result items may be portably used for native queries, except
for stored procedure queries for which named parameters have been defined. When binding the values of positional
parameters, the numbering starts as “ 1 ”. It is assumed that for native queries the parameters themselves use the SQL
syntax (i.e., “ ?”, rather than “ ?1 7).

The use of positional parameters is not supported for criteria queries.

3.11.8. Arguments to query parameters

Arguments are assigned to query parameters by calling Query.setParameter (). The first parameter of setParameter()
identifies the named or positional parameter of the query.

An argument may be assigned to a single-valued parameter of a JPQL or native SQL query by passing the argument to
the second parameter of setParameter().

query.setParameter("name", name)

A list of arguments may be assigned to a collection-valued parameter of a JPQL query by packaging the arguments in a
non-null instance of java.util.List and passing the list as an argument to the second parameter of setParameter(). The
list should contain at least one element. If the list is empty the behavior is undefined. Portable applications should not
pass an empty list to a collection-valued parameter.

query.setParameter("names", List.of(name1, name2, name3))

3.11.9. Named Queries

Named queries are static queries expressed in metadata or queries registered by means of the EntityManagerFactory
addNamedQuery method. Named queries can be defined in the Jakarta Persistence query language or in SQL. Query names
are scoped to the persistence unit.

The following is an example of the definition of a named query defined in metadata:

(

name="findAl1lCustomersWithName",
query="SELECT ¢ FROM Customer c WHERE c.name LIKE :custName"

The following is an example of the use of a named query:
public EntityManager em;
/] ...
customers = em.createNamedQuery("findAl1CustomersWithName")

.setParameter("custName", "Smith")
.getResultList();

3.11.10. Polymorphic Queries

By default, all queries are polymorphic. That is, the FROM clause of a query designates not only instances of the specific
entity class(es) to which it explicitly refers, but subclasses as well. The instances returned by a query include instances
of the subclasses that satisfy the query conditions.

77

For example, the following query returns the average salary of all employees, including subtypes of Employee, such as
Manager and Exempt.

select avg(e.salary) from Employee e where e.salary > 80000

Entity type expressions, described in Section 4.7.12, as well as the use of downcasting, described in Section 4.4.9, can be
used to restrict query polymorphism.

3.11.11. SQL Queries

Queries may be expressed in native SQL. The result of a native SQL query may consist of entities, unmanaged instances
created via constructors, scalar values, or some combination of these.

o The SQL query facility is intended to provide support for those cases where it is necessary to use the
native SQL of the target database in use (and/or where the Jakarta Persistence query language cannot
be used). Native SQL queries are not expected to be portable across databases.

3.11.11.1. Returning Managed Entities from Native Queries

The persistence provider is responsible for performing the mapping between the values returned by the SQL query and
entity attributes in accordance with the object/relational mapping metadata for the entity or entities. In particular, the
names of the columns in the SQL result are used to map to the entity attributes as defined by this metadata. This
mapping includes the mapping of the attributes of any embeddable classes that are part of the non-collection-valued

entity state and attributes corresponding to foreign keys contained as part of the entity state™™.

When an entity is to be returned from a native query, the SQL statement should select all of the columns that are
mapped to the entity object. This should include foreign key columns to related entities. The results obtained when
insufficient data is available are undefined.

In the simplest case—i.e., when the results of the query are limited to entities of a single entity class and the mapping
information can be derived from the columns of the SQL result and the object/relational mapping metadata—it is
sufficient to specify only the expected class of the entity result.

The following example illustrates the case where a native SQL query is created dynamically using the createNativeQuery
method and the entity class that specifies the type of the result is passed in as an argument.

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = 'widget')",
com.acme.Order.class);

When executed, this query will return a collection of all Order entities for items named “widget”.

The SqlResultSetMapping metadata annotation—which is designed to handle more complex cases—can be used as an
alternative here. See Section 10.4.4 for the definition of the SqlResultSetMapping metadata annotation and related
annotations.

For the query shown above, the SqlResultSetMapping metadata for the query result type might be specified as follows:

(
name="WidgetOrderResults",
entities= (entityClass=com.acme.Order.class))

78

The same results as produced by the query above can then obtained by the following:

Query q = em.createNativeQuery(
"SELECT 0.id, o.quantity, o.item " +
"FROM Order o, Item i " +
"WHERE (o.item = i.id) AND (i.name = 'widget')",
"WidgetOrderResults");

When multiple entities are returned by a SQL query or when the column names of the SQL result do not correspond to

those of the object/relational mapping metadata, a SqlResultSetMapping metadata definition must be provided to specify

the entity mapping.

The following query and SqlResultSetMapping metadata illustrates the return of multiple entity types. It assumes default

metadata and column name defaults.

Query q = em.createNativeQuery(
"SELECT o.id, o.quantity, o.item, i.id, i.name, i.description " +
"FROM Order o, Item i " +
"WHERE (o.quantity > 25) AND (o.item = i.id)",
"OrderItemResults");

(name="0rderItemResults", entities={
(entityClass=com.acme.Order.class),
(entityClass=com.acme.Item.class)

1))

When the column names of the SQL result do not correspond to those of the object/relational mapping metadata or

introduce a conflict in mapping column defaults as in the example code above, more explicit SQL result mapping

metadata must be provided to enable the persistence provider runtime to map the JDBC results into the expected

objects. This might arise, for example, when column aliases must be used in the SQL SELECT clause when the SQL

result would otherwise contain multiple columns of the same name or when columns in the SQL result are the results

of operators or functions. The FieldResult annotation element within the EntityResult annotation is used to specify the

mapping of such columns to entity attributes.

The following example combining multiple entity types includes aliases in the SQL statement. This requires that the

column names be explicitly mapped to the entity fields corresponding to those columns. The FieldResult annotation is

used for this purpose.

Query q = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"0.quantity AS order_quantity, " +
"o.item AS order_item, " +
"i.id, i.name, i.description " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item = i.id)",
"OrderItemResults");

(name="0rderItemResults", entities={
(entityClass=com.acme.Order.class, fields={
(name="1id", column="order_id"),
(name="quantity", column="order_quantity"),
(name="1item", column="order_item")}),
(entityClass=com.acme.Item.class)

i)

When the returned entity type contains an embeddable class, the FieldResult element must use a dot (“
indicate which column maps to which field or property of the contained embeddable.

Example:

. ”) notation to

79

Query q = em.createNativeQuery(
"SELECT c.id AS customer_id, " +

"c.street AS customer_street, " +
"c.city AS customer_city, " +
"c.state AS customer_state, " +
"c.status AS customer_status "
"FROM Customer c " +
"WHERE c.status = 'GOLD" ",

"CustomerResults");

+

(name="CustomerResults”, entities={
(entityClass=com.acme.Customer.class, fields={
(name="id", column="customer_id"),
(name="address.street", column="customer_street"),
(name="address.city", column="customer_city"),
(name="address.state", column="customer_state"),
(name="status", column="customer_status")
9]
9]

When the returned entity type is the owner of a single-valued relationship and the foreign key is a composite foreign
key (composed of multiple columns), a FieldResult element should be used for each of the foreign key columns. The
FieldResult element must use the dot (“ . ”) notation form to indicate the column that maps to each property or field of
the target entity primary key.

If the target entity has a primary key of type IdClass, this specification takes the form of the name of the field or
property for the relationship, followed by a dot (“ . ”), followed by the name of the field or property of the primary key
in the target entity. The latter will be annotated with Id, as specified in Section 11.1.23.

Example:

Query q = em.createNativeQuery(

"SELECT o.1id AS order_id, " +
"0.quantity AS order_quantity, " +
"o.item_id AS order_item_id, " +
"0.item_name AS order_item_name, " +
"i.id, i.name, i.description " +
"FROM Order o, Item i " +
"WHERE (order_quantity > 25) AND (order_item_id = i.id) " +
"AND (order_item_name = i.name)",

"OrderItemResults");

(name="0rderItemResults", entities={
(entityClass=com.acme.Order.class, fields={
(name="1id", column="order_id"),
(name="quantity", column="order_quantity"),
(name="1item.id", column="order_item_id")}),
(name="1item.name", column="order_item_name")}),
(entityClass=com.acme.Item.class)

1))

If the target entity has a primary key of type EmbeddedId, this specification is composed of the name of the field or
property for the relationship, followed by a dot (“ . ”), followed by the name or the field or property of the primary key
(i.e., the name of the field or property annotated as EmbeddedId), followed by the name of the corresponding field or
property of the embedded primary key class.

Example:

Query q = em.createNativeQuery(
"SELECT o.1d AS order_id, " +
"0.quantity AS order_quantity, " +

80

"o.item_id AS order_item_id, " +

"0.item_name AS order_item_name, " +

"i.id, i.name, i.description " +

"FROM Order o, Item i " +

"WHERE (order_quantity > 25) AND (order_item_id = i.id) AND (order_item_name = i.name)",
"OrderItemResults");

(name="OrderItemResults", entities={
(entityClass=com.acme.Order.class, fields={

(name="1id", column="order_id"),

(name="quantity", column="order_quantity"),

(name="1item.itemPk.id", column="order_item_id")}),

(name="1item.itemPk.name", column="order_item_name")}),
(entityClass=com.acme.Item.class)

b

The FieldResult elements for the composite foreign key are combined to form the primary key EmbeddedId class for the
target entity. This may then be used to subsequently retrieve the entity if the relationship is to be eagerly loaded.

The dot-notation form is not required to be supported for any usage other than for embeddables, composite foreign
keys, or composite primary keys.

3.11.11.2. Returning Unmanaged Instances

Instances of other classes (including non-managed entity instances) as well as scalar results can be returned by a native
query. These can be used singly, or in combination, including with entity results.

Scalar Results

Scalar results can be included in the query result by specifying the ColumnResult annotation element of the
SqlResultSetMapping annotation. The intended type of the result can be specified using the type element of the
ColumnResult annotation.

Query q = em.createNativeQuery(
"SELECT o.id AS order_id, " +
"0.quantity AS order_quantity, " +

"o.item AS order_item, " +

"i.name AS item_name, " +

"i.availabilityDate AS item_shipdate " +

"FROM Order o, Item i " +

"WHERE (order_quantity > 25) AND (order_item = 1i.id)",
"OrderResults");

(
name="0OrderResults",
entities={
(entityClass=com.acme.Order.class, fields={
(name="1id", column="order_id"),
(name="quantity", column="order_quantity"),
(name="1item", column="order_item")}
)}
columns={
(name="1item_name"),
(name="1item_shipdate", type=java.util.Date.class)
9]

Constructor Results

The mapping to constructors is specified using the ConstructorResult annotation element of the SqlResultSetMapping

81

annotation. The targetClass element of the ConstructorResult annotation specifies the class whose constructor
corresponds to the specified columns. All columns corresponding to arguments of the intended constructor must be
specified using the columns element of the ConstructorResult annotation in the same order as that of the argument list of
the constructor. Any entities returned as constructor results will be in either the new or the detached state, depending
on whether a primary key is retrieved for the constructed object.

Example:

Query q = em.createNativeQuery(
"SELECT c.id, c.name, COUNT(o) as orderCount, AVG(o.price) AS avgOrder " +
"FROM Customer c, Orders o " +
"WHERE o.cid = c.id " +
"GROUP BY c.id, c.name",
"CustomerDetailsResult");

(name="CustomerDetailsResult", classes={
(targetClass=com.acme.CustomerDetails.class, columns={
(name="1id"),
(name="name"),
(name="orderCount"),
(name="avgOrder", type=Double.class)})
9]

3.11.11.3. Combinations of Result Types

When a SqlResultSetMapping specifies more than one mapping type (i.e., more than one of EntityResult, ConstructorResult,
ColumnResult), then for each row in the SQL result, the query execution will result in an Object[] instance whose
elements are as follows, in order: any entity results (in the order in which they are defined in the entities element); any
instances of classes corresponding to constructor results (in the order defined in the classes element); and any
instances corresponding to column results (in the order defined in the columns element). If there are any columns whose
result mappings have not been specified, they are ignored.

3.11.11.4. Restrictions

When an entity is being returned, the SQL statement should select all of the columns that are mapped to the entity
object. This should include foreign key columns to related entities. The results obtained when insufficient data is
available are undefined. A SQL result set mapping must not be used to map results to the non-persistent state of an
entity.

The use of named parameters is not defined for native SQL queries. Only positional parameter binding for SQL queries

may be used by portable applications.

3.11.12. Stored Procedures

The StoredProcedureQuery interface supports the use of database stored procedures.
Stored procedures can be specified either by means of the NamedStoredProcedureQuery annotation or dynamically.

Annotations for the specification of stored procedures are described in Section 10.4.3.

3.11.12.1. Named Stored Procedure Queries

Unlike in the case of a named native query, the NamedStoredProcedureQuery annotation names a stored procedure that
exists in the database rather than providing a stored procedure definition. The NamedStoredProcedureQuery annotation
specifies the types of all parameters to the stored procedure, their corresponding parameter modes (IN, OUT, INOUT,
REF_CURSOR™"), and how result sets, if any, are to be mapped. The name that is assigned to the stored procedure in the

82

NamedStoredProcedureQuery annotation is passed as an argument to the createNamedStoredProcedureQuery method to create
an executable StoredProcedureQuery object.

A stored procedure may return more than one result set. As with native queries, the mapping of result sets can be
specified either in terms of a resultClasses or as a resultSetMappings annotation element. If there are multiple result sets,
it is assumed that they will be mapped using the same mechanism — e.g., all via a set of result class mappings or all via
a set of result set mappings. The order of the specification of these mappings must be the same as the order in which
the result sets will be returned by the stored procedure invocation. If the stored procedure returns one or more result
sets and no resultClasses or resultSetMappings element has been specified, any result set will be returned as a list of type
Object[]. The combining of different strategies for the mapping of stored procedure result sets is undefined.

StoredProcedureParameter metadata needs to be provided for all parameters. Parameters must be specified in the order in
which they occur in the parameter list of the stored procedure. If parameter names are used, the parameter name is
used to bind the parameter value and to extract the output value (if the parameter is an INOUT or OUT parameter). If
parameter names are not specified, it is assumed that positional parameters are used. The mixing of named and
positional parameters is invalid.

3.11.12.2. Dynamically-specified Stored Procedure Queries

If the stored procedure is not defined using metadata, parameter and result set information must be provided
dynamically.

All parameters of a dynamically-specified stored procedure query must be registered using the
registerStoredProcedureParameter method of the StoredProcedureQuery interface.

Result set mapping information can be provided by means of the createStoredProcedureQuery method.

3.11.12.3. Stored Procedure Query Execution

Stored procedure query execution can be controlled as described below.

The setParameter methods are used to set the values of all required IN and INOUT parameters. It is not required to set
the values of stored procedure parameters for which default values have been defined by the stored procedure.

When getResultlist, getSingleResult, and getSingleResultOrNull are called on a StoredProcedureQuery object, the
persistence provider will call execute on an unexecuted stored procedure query before processing getResultlList,
getSingleResult or getSingleResultOrNull.

When executelUpdate is called on a StoredProcedureQuery object, the persistence provider will call execute on an unexecuted
stored procedure query followed by getUpdateCount. The results of executeUpdate will be those of getUpdateCount.

The execute method supports both the simple case where scalar results are passed back only via INOUT and OUT
parameters as well as the most general case (multiple result sets and/or update counts, possibly also in combination
with output parameter values).

The execute method returns true if the first result is a result set, and false if it is an update count or there are no results
other than through INOUT and OUT parameters, if any.

If the execute method returns true, the pending result set can be obtained by calling getResultList, getSingleResult, or
getSingleResultOrNull. The hasMoreResults method can then be used to test for further results.

If execute or hasMoreResults returns false, the getUpdateCount method can be called to obtain the pending result if it is an
update count. The getUpdateCount method will return either the update count (zero or greater) or -1 if there is no update
count (i.e., either the next result is a result set or there is no next update count).

83

For portability, results that correspond to JDBC result sets and update counts need to be processed before the values of
any INOUT or OUT parameters are extracted.

After results returned through getResultList and getUpdateCount have been exhausted, results returned through INOUT
and OUT parameters can be retrieved.

The getOutputParameterValue methods are used to retrieve the values passed back from the procedure through INOUT
and OUT parameters.

When using REF_CURSOR parameters for result sets, the update counts should be exhausted before calling getResultList to
retrieve the result set. Alternatively, the REF_CURSOR result set can be retrieved through getOutputParameterValue. Result set
mappings will be applied to results corresponding to REF_CURSOR parameters in the order the REF_CURSOR parameters were
registered with the query.

In the simplest case, where results are returned only via INOUT and OUT parameters, execute can be followed
immediately by calls to getOutputParameterValue.

3.12. Summary of Exceptions

The following is a summary of the exceptions defined by this specification:
PersistenceException

The PersistenceException is thrown by the persistence provider when a problem occurs. It may be thrown to report that
the invoked operation could not complete because of an unexpected error (e.g., failure of the persistence provider to
open a database connection).

All other exceptions defined by this specification are subclasses of the PersistenceException. All instances of
PersistenceException except for instances of NoResultException, NonUniqueResultException, LockTimeoutException, and
QueryTimeoutException will cause the current transaction, if one is active and the persistence context has been joined to
it, to be marked for rollback.

TransactionRequiredException
The TransactionRequiredException is thrown by the persistence provider when a transaction is required but is not active.
OptimisticLockException

The OptimisticLockException is thrown by the persistence provider when an optimistic locking conflict occurs. This
exception may be thrown as part of an API call, at flush, or at commit time. The current transaction, if one is active, will
be marked for rollback.

PessimisticLockException

The PessimisticLockException is thrown by the persistence provider when a pessimistic locking conflict occurs. The
current transaction will be marked for rollback. Typically the PessimisticLockException occurs because the database
transaction has been rolled back due to deadlock or because the database uses transaction-level rollback when a
pessimistic lock cannot be granted.

LockTimeoutException

The LockTimeoutException is thrown by the persistence provider when a pessimistic locking conflict occurs that does not
result in transaction rollback. Typically this occurs because the database uses statement-level rollback when a
pessimistic lock cannot be granted (and there is no deadlock). The LockTimeoutException does not cause the current
transaction to be marked for rollback.

RollbackException
84

The RollbackException is thrown by the persistence provider when EntityTransaction.commit fails.
EntityExistsException

The EntityExistsException may thrown by the persistence provider when the persist operation is invoked and the entity
already exists. The EntityExistsException may be thrown when the persist operation is invoked, or the
EntityExistsException or another PersistenceException may be thrown at commit time. The current transaction, if one is
active and the persistence context has been joined to it, will be marked for rollback.

EntityNotFoundException

The EntityNotFoundException is thrown by the persistence provider when an entity reference obtained by getReference is
accessed but the entity does not exist. It is thrown by the refresh operation when the entity no longer exists in the
database. It is also thrown by the lock operation when pessimistic locking is used and the entity no longer exists in the
database. The current transaction, if one is active and the persistence context has been joined to it, will be marked for
rollback.

NoResultException

The NoResultException is thrown by the persistence provider when Query.getSingleResult is invoked and there is no result
to return. This exception will not cause the current transaction, if one is active, to be marked for rollback.

NonUniqueResultException

The NonUniqueResultException is thrown by the persistence provider when Query.getSingleResult or
Query.getSingleResultOrNull is invoked and there is more than one result from the query. This exception will not cause
the current transaction, if one is active, to be marked for rollback.

QueryTimeoutException

The QueryTimeoutException is thrown by the persistence provider when a query times out and only the statement is rolled
back. The QueryTimeoutException does not cause the current transaction, if one is active, to be marked for rollback.

[1] This includes, for example. modifications to persistent attributes of type char[] and byte[].

[2] This might be an issue if unique constraints (such as those described for the default mappings in Section 2.12.3.1
and Section 2.12.5.1) were not applied in the definition of the object/relational mapping.

[3] Note that when a new transaction is begun, the managed objects in an extended persistence context are not
reloaded from the database.

[4] These are instances that were persistent in the database at the start of the transaction.

[5] It is unspecified as to whether instances that were not persistent in the database behave as new instances or
detached instances after rollback. This may be implementation-dependent.

[6] Applications may require that database isolation levels higher than read-committed be in effect. The configuration
of the setting database isolation levels, however, is outside the scope of this specification.

[7] Such alternative mechanisms might be standardized by a future release of this specification.
[8] This includes owned relationships maintained in join tables.

[9] Typically, by incrementing the version number, or by replacing the previous timestamp with a timestamp
representing the current time.

[10] Ideally, version verification and update happen in a single atomic operation against the datastore, for example, in
a single SQL update statement.

[11] Implementations are permitted to use database mechanisms other than locking to achieve the semantic effects
described here, for example, multiversion concurrency control mechanisms.

[12] This is achieved by using a lock with LockModeType.PESSIMISTIC_WRITE or LockModeType.PESSIMISTIC_FORCE_INCREMENT as

85

described in Section 3.5.4.

[13] For example, a persistence provider may use an underlying database platform’s SELECT FOR UPDATE statements
to implement pessimistic locking if that construct provides appropriate semantics, or the provider may use an isolation
level of repeatable read.

[14] The lock mode type NONE may be specified as a method argument and also provides a default value for
annotations.

[15] Databases concurrency control mechanisms that provide comparable semantics, e.g., multiversion concurrency
control, can be used by the provider.

[16] The persistence provider is not required to flush the entity to the database immediately.
[17] CDI is enabled by default in Jakarta EE. See the Jakarta EE specification [6].

[18] The persistence provider may support CDI injection into entity listeners in other environments in which the
BeanManager is available.

[19] For example, if a transaction commit occurs as a result of the normal termination of a session bean business
method with transaction attribute RequiresNew, the PostPersist and PostRemove callbacks are executed in the naming
context, the transaction context, and the security context of that component.

[20] Note that this caution applies also to the actions of objects that might be injected into an entity listener

[21] Excluded listeners may be reintroduced on an entity class by listing them explicitly in the EntityListeners
annotation or XML entity-1isteners element.

[22] If a method overrides an inherited callback method but specifies a different lifecycle event or is not a lifecycle
callback method, the overridden method will not be invoked.

[23] We plan to provide a facility for more complex attribute conversions in a future release of this specification.
[24] CDI is enabled by default in Jakarta EE. See the Jakarta EE specification [6].

[25] The persistence provider may support CDI injection into attribute converters in other environments in which the
BeanManager is available.

[26] A lock mode is specified for a query by means of the setLockMode method or by specifying the lock mode in the
NamedQuery annotation.

[27] Note that the setLockMode method may be called more than once (with different values) on a Query or
TypedQuery object.

[28] Note that locking will not occur for data passed to aggregate functions. Further, queries involving aggregates with
pessimistic locking may not be supported on all database platforms.

[29] Support for joins is currently limited to single-valued relationships that are mapped directly—i.e., not via join
tables.

[30] Note that REF_CURSOR parameters are used by some databases to return result sets from stored procedures.

86

Chapter 4. Query Language

The Jakarta Persistence query language is a string-based query language used to define queries over entities and their
persistent state. It enables the application developer to specify the semantics of queries in a portable way, independent
of the particular database schema in use in an enterprise environment. The full range of the language may be used in
both static and dynamic queries.

This chapter provides the full definition of the Jakarta Persistence query language.

4.1. Overview

The Jakarta Persistence query language is a query specification language for string-based dynamic queries and static
queries expressed through metadata. It is used to define queries over the persistent entities defined by this
specification and their persistent state and relationships.

The Jakarta Persistence query language can be compiled to a target language, such as SQL, of a database or other
persistent store. This allows the execution of queries to be shifted to the native language facilities provided by the
database, instead of requiring queries to be executed on the runtime representation of the entity state. As a result,
query methods can be optimizable as well as portable.

The query language uses the abstract persistence schema of entities, including their embedded objects and
relationships, for its data model, and it defines operators and expressions based on this data model. It uses a SQL-like
syntax to select objects or values based on abstract schema types and relationships. It is possible to parse and validate
queries before entities are deployed.

o The term abstract persistence schema refers to the persistent schema abstraction (persistent entities,
their state, and their relationships) over which Jakarta Persistence queries operate. Queries over this
persistent schema abstraction are translated into queries that are executed over the database schema
to which entities are mapped.

Queries may be defined in metadata annotations or the XML descriptor. The abstract schema types of a set of entities
can be used in a query if the entities are defined in the same persistence unit as the query. Path expressions allow for
navigation over relationships defined in the persistence unit.

0 A persistence unit defines the set of all classes that are related or grouped by the application and which
must be colocated in their mapping to a single database.

4.2. Statement Types

A Jakarta Persistence query language statement may be either a select statement, an update statement, or a delete
statement.

This chapter refers to all such statements as “queries”. Where it is important to distinguish among
statement types, the specific statement type is referenced.

In BNF syntax, a query language statement is defined as:

QL_statement ::= select_statement | update_statement | delete_statement

Any Jakarta Persistence query language statement may be constructed dynamically or may be statically defined in a
metadata annotation or XML descriptor element.

87

All statement types may have parameters.

4.2.1. Select Statements

A select query is a string with the following clauses:

 a SELECT clause, which determines the type of the objects or values to be selected.

 a FROM clause, which provides declarations that designate the domain to which the expressions specified in the other
clauses of the query apply.

e an optional WHERE clause, which may be used to restrict the results that are returned by the query.
* an optional GROUP BY clause, which allows query results to be aggregated in terms of groups.
* an optional HAVING clause, which allows filtering over aggregated groups.

* an optional ORDER BY clause, which may be used to order the results that are returned by the query.

In BNF syntax, a select query is defined by:

select_query ::= [select_clause]? from_clause [where_clause] [groupby_clause] [having_clause] [orderby_clause]

Every select statement has a FROM clause. The square brackets [] in the BNF indicate that the other clauses are optional.

4.2.1.1. Set Operators in Select Statements

A select statement may be a single select query, or it may combine multiple select queries using the binary left-
associative operators UNION, UNION ALL, INTERSECT, INTERSECT ALL, EXCEPT, and EXCEPT ALL. The semantics of these operators
are identical to SQL.

The full syntax for a select statement is defined by:

select_statement ::= union

union ::= intersection | union {UNION [ALL] | EXCEPT [ALL]} intersection
intersection ::= query_expression | intersection INTERSECT [ALL] query_expression
query_expression ::= select_query | (union)

A provider is only required to support select statements where every constituent select query has the same number of
items in the select clause, and where corresponding items in the select clauses of the constituent select queries either:

* have exactly the same type, as defined by Section 4.9.1, or

o are entity types which inherit a common entity type, as defined by Section 2.13.

4.2.2. Update and Delete Statements

Update and delete statements provide bulk operations over sets of entities.

In BNF syntax, these operations are defined by:

update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]

The update and delete clauses determine the type of the entities to be updated or deleted. The WHERE clause may be used
to restrict the scope of the update or delete operation.

Update and delete statements are described further in Section 4.11.

88

4.3. Abstract Schema Types and Query Domains

The Jakarta Persistence query language is a typed language, and every expression has a type. The type of an expression
is derived from the structure of the expression, the abstract schema types of the identification variable declarations,
the types to which the persistent attributes evaluate, and the types of literals.

The abstract schema type of an entity or embeddable is derived from its class and the metadata information provided
by Java language annotations or in the XML descriptor.

Informally, the abstract schema type of an entity or embeddable can be characterized as follows:

* For every non-relationship persistent field or get accessor method (for a persistent property) of the class, there is a
field (“state field”) whose abstract schema type corresponds to that of the field or the result type of the accessor
method.

 For every persistent relationship field or get accessor method (for a persistent relationship property) of the class,
there is a field (“association field”) whose type is the abstract schema type of the related entity (or, if the
relationship is a one-to-many or many-to-many, a collection of such).

Abstract schema types are specific to the query language data model. The persistence provider is not required to
implement or otherwise materialize an abstract schema type.

The domain of a query consists of the abstract schema types of all entities and embeddables that are defined in the
same persistence unit.

The domain of a query may be restricted by the navigability of the relationships of the entity and associated
embeddable classes on which it is based. The association fields of an entity’s or embeddable’s abstract schema type
determine navigability. Using the association fields and their values, a query can select related entities and use their
abstract schema types in the query.

4.3.1. Naming

Entities are designated in query strings by their entity names. The entity name is defined by the name element of the
Entity annotation (or the entity-name XML descriptor element), and defaults to the unqualified name of the entity class.
Entity names are scoped within the persistence unit and must be unique within the persistence unit.

4.3.2. Example

This example assumes that the application developer provides several entity classes, representing orders, products,
and line items, and an embeddable address class representing shipping addresses and billing addresses. The abstract
schema types for the entities are Order, Product, and LineItem respectively. There is a one-to-many relationship between
Order and LineItem. The entity LineItemis related to Product in a many-to-one relationship. The classes are logically in the
same persistence unit, as shown in Figure 1.

Queries to select orders can be defined by navigating over the association fields and state fields defined by Order and
LineItem. A query to find all orders with pending line items might be written as follows:

SELECT DISTINCT o
FROM Order AS o JOIN o.lineltems AS 1
WHERE 1.shipped = FALSE

89

Shipping Billing
Address Address

Figure 1. Abstract persistence schema of several entities defined in the same persistence unit.

This query navigates over the association field lineItems of the abstract schema type Order to find line items, and uses
the state field shipped of LineItem to select those orders that have at least one line item that has not yet shipped. (Note
that this query does not select orders that have no line items.)

Although reserved identifiers, such as DISTINCT, FROM, AS, JOIN, WHERE, and FALSE appear in upper case in this example,
reserved identifiers are case insensitive.”

The SELECT clause of this example designates the return type of this query to be of type Order.

Because the same persistence unit defines the abstract persistence schema of the related entities, the developer can
also specify a query over orders that utilizes the abstract schema type for products, and hence the state fields and
association fields of both the abstract schema types Order and Product. For example, if the abstract schema type Product
has a state field named productType, a query over orders can be specified using this state field. Such a query might be to
find all orders for products with product type office supplies. A query for this might be as follows.

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1 JOIN 1.product p
WHERE p.productType = 'office_supplies'

Because Order is related to Product by means of the relationships between Order and LineItem and between LineItem and
Product, navigation using the association fields lineItems and product is used to express the query. This query is specified
by using the entity name Order, which designates the abstract schema type over which the query ranges. The basis for
the navigation is provided by the association fields lineItems and product of the abstract schema types Order and LineItem
respectively.

4.4. The FROM Clause and Navigational Declarations

The FROM clause of a query defines the domain of the query:

* one or more named entity abstract schema types, as specified below in Section 4.4.3, together with

 zero or more joined associations and collections, as specified below in Section 4.4.5.

An identification variable is an identifier declared in the FROM clause of a query. Each identification variable is assigned
an abstract schema type. Each element of the domain may declare an identification variable.

« If the domain has exactly one named entity abstract schema type and no joins, then the named entity does not
require an explicit identification variable, and its identification variable defaults to the implicit identification
variable, this.

» Otherwise, every element of the FROM clause—that is, every named entity abstract schema types and every join—

90

must declare an identification variable.

from_clause ::=
FROM {this_implicit_variable | identification_variable_declarations}

this_implicit_variable ::= entity_name
identification_variable_declarations ::=

identification_variable_declaration

{, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration {join | fetch_join}*
range_variable_declaration ::= entity_name [AS] identification_variable
join ::= range_join | path_join
range_join ::= join_spec range_variable_declaration [join_condition]

path_join ::=
join_spec join_association_path_expression [AS] identification_variable [join_condition]

fetch_join ::= join_spec FETCH join_association_path_expression
join_spec ::= [INNER | LEFT [OUTER]] JOIN

join_association_path_expression ::=
join_collection_valued_path_expression |
join_single_valued_path_expression |
TREAT(join_collection_valued_path_expression AS subtype) |
TREAT(join_single_valued_path_expression AS subtype)

join_collection_valued_path_expression ::=
[identification_variable.]{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression ::=
[identification_variable.]{single_valued_embeddable_object_field.}*single_valued_object_field

join_condition ::= ON conditional_expression

collection_member_declaration ::= IN (collection_valued_path_expression) [AS] identification_variable

The following subsections discuss the constructs used in the FROM clause.

4.4.1. Identifiers

An identifier is a character sequence of unlimited length. The character sequence must begin with a Java identifier
start character, and all other characters must be Java identifier part characters. An identifier start character is any
character for which the method Character.isJavaldentifierStart returns true. This includes the underscore (_) character
and the dollar sign ($) character. An identifier part character is any character for which the method
Character.isJavaldentifierPart returns true. The question mark (?) character is reserved for use by the Jakarta
Persistence query language.

The following™ are reserved identifiers: ABS, ALL, AND, ANY, AS, ASC, AVG, BETWEEN, BIT_LENGTH, BOTH, BY, CASE, CEILING, CHAR_LENGTH,
CHARACTER_LENGTH, CLASS, COALESCE, CONCAT, COUNT, CURRENT _DATE, CURRENT _TIME, CURRENT_TIMESTAMP, DELETE, DESC, DISTINCT, ELSE,
EMPTY, END, ENTRY, ESCAPE, EXISTS, EXP, EXTRACT, FALSE, FETCH, FIRST, FLOOR, FROM, FUNCTION, GROUP, HAVING, IN, INDEX, INNER, IS, JOIN,
KEY, LEADING, LAST, LEFT, LENGTH, LIKE, LOCAL, LN, LOCATE, LOWER, MAX, MEMBER, MIN, MOD, NEW, NOT, NULL, NULLS, NULLIF, OBJECT, OF, ON, OR,
ORDER, OUTER, POSITION, POWER, REPLACE, RIGHT, ROUND, SELECT, SET, SIGN, SIZE, SOME, SQRT, SUBSTRING, SUM, THEN, TRAILING, TREAT, TRIM,
TRUE, TYPE, UNKNOWN, UPDATE, UPPER, VALUE, WHEN, WHERE.

91

Reserved identifiers are case-insensitive. Reserved identifiers must not be used as identification variables or result
variables (see Section 4.9).

e It is recommended that SQL keywords other than those listed above not be used as identification
variables in queries because they may be used as reserved identifiers in future releases of this
specification.

4.4.2. Identification Variables

An identification variable is a valid identifier declared in the FROM clause of a query.

Every identification variable must be declared in the FROM clause, except for the implicit identification variable this.
Identification variables are never declared in other clauses.

An identification variable must not be a reserved identifier.
An identification variable may have the same name as an entity.
Identification variables are case-insensitive.

An identification variable evaluates to a value of the type of the expression used in declaring the variable. For example,
consider the previous query:

SELECT DISTINCT o
FROM Order o JOIN o.lineItems 1 JOIN 1.product p
WHERE p.productType = 'office_supplies'

In the FROM clause declaration o.lineltems 1, the identification variable 1 evaluates to any LineItem value directly
reachable from Order. The association field lineItems is a collection of instances of the abstract schema type Lineltem
and the identification variable 1 refers to an element of this collection. The type of 1 is the abstract schema type of

LineItem.

An identification variable can range over an entity, embeddable, or basic abstract schema type. An identification
variable designates an instance of an abstract schema type or an element of a collection of abstract schema type
instances.

Note that for identification variables referring to an instance of an association or collection represented as a
java.util.Map, the identification variable is of the abstract schema type of the map value.

An identification variable always designates a reference to a single value. It is declared in one of three ways: in a range
variable declaration, in a join clause, or in a collection member declaration. The identification variable declarations are
evaluated from left to right in the FROM clause, and an identification variable declaration can use the result of a
preceding identification variable declaration of the query string.

All identification variables used in the SELECT, WHERE, ORDER BY, GROUP BY, or HAVING clause of a SELECT or DELETE statement
must be declared in the FROM clause. The identification variables used in the WHERE clause of an UPDATE statement must be
declared in the UPDATE clause.

Identification variables are existentially quantified in these clauses. This means that an identification variable
represents a member of a collection or an instance of an entity’s abstract schema type. An identification variable never
designates a collection in its entirety.

An identification variable is scoped to the query (or subquery) in which it is defined and is also visible to any
subqueries within that query scope that do not define an identification variable of the same name.

92

4.4.3. Range Variable Declarations

A range variable declaration introduces a query domain element ranging over a given named entity abstract schema
type, with an associated identification variable.

The syntax for declaring an identification variable as a range variable is similar to that of SQL; optionally, it may use
the AS keyword. A range variable declaration designates an entity abstract schema type by its entity name, as defined
above in Section 4.3.1."

range_variable_declaration ::= entity_name [AS] identification_variable

The entity name in a range variable declaration is case-sensitive.

Range variable declarations allow the developer to designate a “root” for objects which may not be reachable by

navigation.

In order to select values by comparing more than one instance of an entity abstract schema type, more than one
identification variable ranging over the abstract schema type is needed in the FROM clause.

The following query returns orders whose quantity is greater than the order quantity for John Smith. This example
illustrates the use of two different identification variables in the FROM clause, both of the abstract schema type Order. The
SELECT clause of this query determines that it is the orders with quantities larger than John Smith’s that are returned.

SELECT DISTINCT o1

FROM Order o1, Order o2

WHERE o1.quantity > o02.quantity AND
02.customer.lastname = 'Smith' AND
02.customer.firstname= 'John'

If the query domain is a single entity abstract schema type, the range variable declaration is optional. These queries are
equivalent:

SELECT quantity

FROM Order

WHERE customer.lastname = 'Smith’
AND customer.firstname= 'John'

SELECT this.quantity

FROM Order

WHERE this.customer.lastname = 'Smith'
AND this.customer.firstname= 'John'

SELECT ord.quantity

FROM Order AS ord

WHERE ord.customer.lastname = 'Smith'
AND ord.customer.firstname= 'John'

Otherwise, if the query domain has more than one element, each named entity abstract schema type listed in the FROM
clause must be a range variable declaration, and the implicit identification variable is not implicitly assigned an
abstract schema type.

4.4.4. Path Expressions

A path expression is a sequence of identifiers uniquely identifying a state field or association field of an element of the
query domain.

93

A path expression may begin with a reference to an identification variable, followed by the navigation operator (.). If
the first element of a path expression is not an identification variable, then the path expression is interpreted exactly
as if it began with the implicit identification variable this.

The remaining elements of the path expression are interpreted as references to state fields or association fields in the
context of the abstract schema type assigned to the identification variable—or to this, if the path expression does not
begin with an identification variable.

A reference to a state field or association field in a path expression is case-sensitive.

The type of the path expression is the type computed as the result of navigation; that is, the type of the state field or
association field to which the expression navigates. The type of a path expression that navigates to an association field
may be specified as a subtype of the declared type of the association field by means of the TREAT operator. See Section
4.4.9.

An identification variable qualified by the KEY, VALUE, or ENTRY operator is a path expression. The KEY, VALUE, and ENTRY
operators may only be applied to identification variables that correspond to map-valued associations or map-valued
element collections. The type of the path expression is the type computed as the result of the operation; that is, the
abstract schema type of the field that is the value of the KEY, VALUE, or ENTRY operator (the map key, map value, or map
entry respectively).”

In the following query, photos is a map from photo label to filename.

SELECT i.name, VALUE(p)
FROM Item i JOIN i.photos p
WHERE KEY(p) LIKE '%egret'

In the above query the identification variable p designates an abstract schema type corresponding to the map value. The
results of VALUE(p) and KEY(p) are the map value and the map key associated with p, respectively. The following query is
equivalent:

SELECT 1.name, p
FROM Item i JOIN i.photos p
WHERE KEY(p) LIKE '%egret'

A path expression using the KEY or VALUE operator can be further composed. A path expression using the ENTRY operator
is terminal. It cannot be further composed and can only appear in the SELECT list of a query.

The syntax for qualified identification variables is as follows.

qualified_identification_variable ::=
map_field_identification_variable |
ENTRY(identification_variable)

map_field_identification_variable ::=

KEY(identification_variable) |
VALUE(identification_variable)

Depending on navigability, a path expression that leads to an association field or to a field whose type is an
embeddable class may be further composed. Path expressions can be composed from other path expressions if the
original path expression evaluates to a single-valued type (not a collection).

In the following example, simple data model with Employee, ContactInfo, Address and Phone classes is used:

public class Employee {
int id;

94

private ContactInfo contactInfo;

public class Phone {

private int id;
private String vendor;

public class ContactInfo {
private Address address;

private List<Phone> phones;

public class Address {
private String street;
private String city;
private String state;
private String zipcode;

The contactInfo field denotes an embeddable class consisting of an address and set of phones.

SELECT p.vendor
FROM Employee e JOIN e.contactInfo.phones p
WHERE e.contactInfo.address.zipcode = '95054"

Path expression navigability is composed using “inner join” semantics. That is, if the value of a non-terminal field in
the path expression is null, the path is considered to have no value, and does not participate in the determination of the
result.

The following query is equivalent to the query above:

SELECT p.vendor
FROM Employee e JOIN e.contactInfo ¢ JOIN c.phones p
WHERE e.contactInfo.address.zipcode = '95054"

4.4.4.1. Path Expression Syntax

The syntax for single-valued path expressions and collection-valued path expressions is as follows.

An identification variable used in a single_valued_object_path_expression or in a collection_valued_path_expression may be
an unqualified identification variable or an identification variable to which the KEY or VALUE function has been applied.

general_identification_variable ::=
identification_variable |
map_field_identification_variable

The type of an entity-valued path expression or an entity-valued subpath of a path expression used in a WHERE clause
may be specified as a subtype of the corresponding declared type by means of the TREAT operator. See Section 4.4.9.

general_subpath ::= simple_subpath | treated_subpath{.single_valued_object_field}*

simple_subpath ::=
general_identification_variable |

95

general_identification_variable{.single_valued_object_field}*
treated_subpath ::= TREAT(general_subpath AS subtype)

single_valued_path_expression ::=
qualified_identification_variable |
TREAT(qualified_identification_variable AS subtype) |
state_field_path_expression |
single_valued_object_path_expression

state_field_path_expression ::= [general_subpath.]state_field

state_valued_path_expression ::= state_field_path_expression | general_identification_variable
single_valued_object_path_expression ::= general_subpath.single_valued_object_field
collection_valued_path_expression ::= general_subpath.collection_valued_field

A single_valued_object_field is designated by the name of an association field in a one-to-one or many-to-one
relationship or a field of embeddable class type. The type of a single_valued_object_field is the abstract schema type of
the related entity or embeddable class.

A single_valued_embeddable_object_field is designated by the name of a field of embeddable class type.
A state_field is designated by the name of an entity or embeddable class state field that corresponds to a basic type.

A collection_valued_field is designated by the name of an association field in a one-to-many or a many-to-many
relationship or by the name of an element collection field. The type of a collection_valued_field is a collection of values
of the abstract schema type of the related entity or element type.

It is syntactically illegal to compose a path expression from a path expression that evaluates to a collection. For
example, if o designates Order, the path expression o.lineltems.product is illegal since navigation to lineltems results in a
collection. This case should produce an error when the query string is verified. To handle such a navigation, an
identification variable must be declared in the FROM clause to range over the elements of the lineltems collection.
Another path expression must be used to navigate over each such element in the WHERE clause of the query, as in the
following:

SELECT DISTINCT 1.product
FROM Order AS o JOIN o.lineltems 1

A collection_valued_path_expression may only occur in:

* the FROM clause of a query,
e an empty_collection_comparison_expression,
* acollection_member_expression, or

¢ as an argument to the SIZE operator.

See Section 4.6.8, Section 4.6.9, and Section 4.7.7.2.

4.4.5. Joins

JPQL defines the following varieties of join:

e inner joins, and.

« left outer joins."”

The semantics of each variety of join is identical to SQL, and the syntax is borrowed from ANSI SQL.

96

Every join has a target, either:

 an entity-valued path expression, or

* an entity type (that is, range variable declaration, as already specified in Section 4.4.3).

An inner join may be implicitly specified by the use of a cartesian product in the FROM clause and a join condition in the
WHERE clause. In the absence of a join condition, this reduces to the cartesian product.

The main use case for this generalized style of join is when a join condition does not involve a foreign key relationship
mapped to an association between entities.

Example:

SELECT ¢ FROM Customer c, Employee e WHERE c.hatsize = e.shoesize

This style of inner join (sometimes called a "theta" join) is less typical than explicitly defined joins over relationships.

The syntax for explicit join operations is given by:

join ::= range_join | path_join
range_join ::= join_spec range_variable_declaration [join_condition]
path_join ::=

join_spec join_association_path_expression [AS] identification_variable [join_condition]
fetch_join ::= join_spec FETCH join_association_path_expression
join_spec ::= [INNER | LEFT [OUTER]] JOIN
join_association_path_expression ::=
join_collection_valued_path_expression |
join_single_valued_path_expression |
TREAT(join_collection_valued_path_expression ‘AS‘ subtype) |
TREAT(join_single_valued_path_expression AS subtype)

join_collection_valued_path_expression ::=
[identification_variable.]{single_valued_embeddable_object_field.}*collection_valued_field

join_single_valued_path_expression ::=
[identification_variable.]{single_valued_embeddable_object_field.}*single_valued_object_field

join_condition ::= ON conditional_expression

The inner and outer join operation types described in Section 4.4.5.1, Section 4.4.5.2, and Section 4.4.5.3 are supported.

4.4.5.1. Inner Joins
The syntax for an inner join to an entity type is given by:

[INNER] JOIN range_variable_declaration [join_condition]

The keyword INNER is optional and does not affect the semantics of the query.

SELECT ¢
FROM Customer c

JOIN Order o ON o.customer.id = c.id
WHERE c.status = 1

Or, equivalently:

97

SELECT ¢
FROM Customer c

INNER JOIN Order o ON o.customer.id = c.id
WHERE c.status = 1

These queries are equivalent to the following query involving an implicit "theta" join:

SELECT ¢
FROM Customer c, Order o
WHERE o.customer.id = c.id AND c.status = 1

The syntax for an inner join over an association is given by:

[INNER] JOIN join_association_path_expression [AS] identification_variable [join_condition]

For example, the query below joins over the relationship between customers and orders. This type of join typically
equates to a join over a foreign key relationship in the database.

SELECT ¢

FROM Customer ¢
JOIN c.orders o

WHERE c.status = 1

Equivalently:

SELECT ¢
FROM Customer ¢

INNER JOIN c.orders o
WHERE c.status = 1

This is equivalent to the following query using the earlier IN construct, defined in [4]. It selects those customers of
status 1 for which at least one order exists:

SELECT OBJECT(c)
FROM Customer ¢, IN(c.orders) o
WHERE c.status = 1

The query below joins over Employee, ContactInfo and Phone. ContactInfo is an embeddable class that consists of an
address and set of phones. Phone is an entity.

SELECT p.vendor
FROM Employee e JOIN e.contactInfo c JOIN c.phones p
WHERE c.address.zipcode = '95054'

A join condition may be specified for an inner join. This is equivalent to specification of the same condition in the WHERE
clause.

4.4.5.2. Outer Joins
The syntax for an outer join to an entity type is given by:

LEFT [OUTER] JOIN range_variable_declaration [join_condition]

The keyword OUTER is optional and does not affect the semantics of the query.

SELECT ¢

98

FROM Customer c
LEFT JOIN Order o ON o.customer.id = c.id
WHERE c.status = 1

Or, equivalently:

SELECT ¢
FROM Customer c

LEFT OUTER JOIN Order o ON o.customer.id = c.id
WHERE c.status = 1

Outer joins enable the retrieval of a set of entities where matching values in the join condition may be absent. For
example, the queries above return Customer instances with no matching Order.

The syntax for an outer join over an association is given by:

LEFT [OUTER] JOIN join_association_path_expression [AS] identification_variable [join_condition]

An association outer join without no explicit join_condition has an implicit join condition inferred from the foreign key
relationship mapped by the join_association_path_expression. Typically, a JPQL join of this form is translated to a SQL
outer join with an ON condition specifying the foreign key relationship, as in the following examples.

Jakarta Persistence query language:

SELECT s.name, COUNT(p)
FROM Suppliers s LEFT JOIN s.products p
GROUP BY s.name

SQL:

SELECT s.name, COUNT(p.id)

FROM Suppliers s LEFT JOIN Products p
ON s.id = p.supplierld

GROUP By s.name

An explicit join_condition (that is, an ON condition in the JOIN) results in an additional restriction in the ON condition of
the generated SQL.

Jakarta Persistence query language:

SELECT s.name, COUNT(p)

FROM Suppliers s LEFT JOIN s.products p
ON p.status = "inStock'

GROUP BY s.name

SQL:

SELECT s.name, COUNT(p.id)
FROM Suppliers s LEFT JOIN Products p

ON s.id = p.supplierId AND p.status = "inStock'
GROUP BY s.name

Note that the result of this query will be different from that of the following query:

SELECT s.name, COUNT(p)

FROM Suppliers s LEFT JOIN s.products p
WHERE p.status = "inStock'

GROUP BY s.name

99

The result of the latter query will exclude suppliers who have no products in stock whereas the former query will
include them.

An important use case for LEFT JOIN is in enabling the prefetching of related data items as a side effect of a query. This is
accomplished by specifying the LEFT JOIN as a FETCH JOIN, as described below.

4.4.5.3. Fetch Joins

A FETCH JOIN clause in a query results in eager fetching of an association or element collection as a side effect of
execution of the query.

The syntax for a fetch join is given by:

fetch_join ::= [LEFT [OUTER] | INNER] JOIN FETCH join_association_path_expression

A FETCH JOIN must be an INNER or LEFT (OUTER) join. A FETCH JOIN does not have an explicit join condition or identification
variable.

The association referenced by the right side of the FETCH JOIN clause must be an association or element collection that is
referenced from an entity or embeddable that is returned as a result of the query. It is not permitted to specify an
identification variable for the objects referenced by the right side of the FETCH JOIN clause, and hence references to the
implicitly fetched entities or elements cannot appear elsewhere in the query.

The following query returns a set of departments. As a side effect, the associated employees for those departments are
also retrieved, even though they are not part of the explicit query result. The initialization of the persistent state or
relationship fields or properties of the objects that are retrieved as a result of a fetch join is determined by the
metadata for that class—in this example, the Employee entity class.

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

A fetch join has the same join semantics as the corresponding inner or outer join, except that the related objects
specified on the right-hand side of the join operation are not returned in the query result or otherwise referenced in
the query. Hence, for example, if department 1 has five employees, the above query returns five references to the
department 1 entity.

The FETCH JOIN construct must not be used in the FROM clause of a subquery.

4.4.6. Collection Member Declarations

An identification variable declared by a collection_member_declaration ranges over values of a collection obtained by
navigation using a path expression.

An identification variable of a collection member declaration is declared using a special operator, the reserved
identifier IN. The argument to the IN operator is a collection-valued path expression. The path expression evaluates to a
collection type specified as a result of navigation to a collection-valued association field of an entity or embeddable
class abstract schema type.

The syntax for declaring a collection member identification variable is as follows:

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable

For example, the query

100

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1.product.productType = 'office_supplies’

can equivalently be expressed as follows, using the IN operator:

SELECT DISTINCT o
FROM Order o, IN(o.lineItems) 1
WHERE 1.product.productType = 'office_supplies’

In this example, lineltems is the name of an association field whose value is a collection of instances of the abstract
schema type LineItem. The identification variable 1 designates a member of this collection, a single LineIltem abstract
schema type instance. In this example, o is an identification variable of the abstract schema type Order.

4.4.7. FROM Clause and SQL

The Jakarta Persistence query language treats the FROM clause similarly to SQL in that the declared identification
variables affect the results of the query even if they are not used in the WHERE clause. Application developers should use
caution in defining identification variables because the domain of the query can depend on whether there are any
values of the declared type.

For example, the FROM clause below defines a query over all orders that have line items and existing products. If there
are no Product instances in the database, the domain of the query is empty and no order is selected.

SELECT o
FROM Order AS o JOIN o.lineltems 1 JOIN 1.product p

4.4.8. Polymorphism

Jakarta Persistence queries are automatically polymorphic. The FROM clause of a query designates not only instances of
the specific entity class(es) to which it explicitly refers but instances of subclasses of those classes as well. The instances
returned by a query thus include instances of the subclasses that satisfy the query criteria.

Non-polymorphic queries or queries whose polymorphism is restricted can be specified using entity type expressions
in the WHERE clause to restrict the domain of the query. See Section 4.7.12.

4.4.9. Downcasting

The use of the TREAT operator is supported for downcasting within path expressions in the FROM and WHERE clauses. Use of
the TREAT operator allows access to subclass-specific state.

If during query execution the first argument to the TREAT operator is not a subtype (proper or improper) of the target
type, the path is considered to have no value, and does not participate in the determination of the result. That is, in the
case of a join, the referenced object does not participate in the result, and in the case of a restriction, the associated
predicate is false. Use of the TREAT operator therefore also has the effect of filtering on the specified type (and its
subtypes) as well as performing the downcast. If the target type is not a subtype (proper or improper) of the static type
of the first argument, the query is invalid.

Examples:

SELECT b.name, b.ISBN
FROM Order o JOIN TREAT(o.product AS Book) b

SELECT e FROM Employee e JOIN TREAT(e.projects AS LargeProject) 1p
WHERE 1p.budget > 1000

101

SELECT e FROM Employee e JOIN e.projects p

WHERE TREAT(p AS LargeProject).budget > 1000
OR TREAT(p AS SmallProject).name LIKE 'Persist%’
OR p.description LIKE "cost overrun"

SELECT e FROM Employee e

WHERE TREAT(e AS Exempt).vacationDays > 10
OR TREAT(e AS Contractor).hours > 100

4.5. WHERE Clause

The WHERE clause of a query consists of a conditional expression used to select objects or values that satisfy the
expression. The WHERE clause restricts the result of a select statement or the scope of an update or delete operation.

A WHERE clause is defined as follows:

where_clause ::= WHERE conditional_expression
The GROUP BY construct enables the aggregation of values according to the properties of an entity class. The HAVING
construct enables conditions to be specified that further restrict the query result as restrictions upon the groups.

The syntax of the HAVING clause is as follows:

having_clause ::= HAVING conditional_expression

The GROUP BY and HAVING constructs are further discussed in Section 4.8.

4.6. Conditional Expressions

The following sections describe language constructs that can be used in a conditional expression of the WHERE clause, the
HAVING clause, or in an ON condition.

State fields that are mapped in serialized form or as lobs cannot be portably used in conditional .

4.6.1. Conditional Expression Composition

Conditional expressions are composed of other conditional expressions, comparison operations, logical operations,
path expressions that evaluate to boolean values, boolean literals, and boolean input parameters.

The scalar expressions described in Section 4.7 can be used in conditional expressions.
Aggregate functions can only be used in conditional expressions in a HAVING clause. See Section 4.8.
Standard bracketing () for ordering expression evaluation is supported.

Conditional expressions are defined as follows:

conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=

comparison_expression |

between_expression |

in_expression |

like_expression |

null_comparison_expression

102

empty_collection_comparison_expression
collection_member_expression |
exists_expression

4.6.2. Operators and Operator Precedence

The operators are listed below in order of decreasing precedence.

» Navigation operator (.)

Arithmetic operators:
° +, - unary
- * / multiplication and division
o +, - addition and subtraction

« String concatenation (||)

* Comparison operators: =, >, >=, <, <=, <> (not equal), [NOT] BETWEEN, [NOT] LIKE, [NOT] IN, IS [NOT] NULL, IS [NOT] EMPTY,

[NOT] MEMBER [OF], [NOT] EXISTS
* Logical operators:
o NOT
o AND
o OR

The following sections describe operators used in specific expressions.

4.6.3. Comparison Expressions

The syntax for the use of comparison expressions in a conditional expression is as follows™:

comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any_expression} |
boolean_expression {= | <>} {boolean_expression | all_or_any_expression} |
enum_expression {= | <>} {enum_expression | all_or_any_expression} |
datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |
entity_expression {= | <>} {entity_expression | all_or_any_expression} |
arithmetic_expression comparison_operator

{arithmetic_expression | all_or_any_expression} |
entity_id_or_version_function {= | <>} input_parameter
entity_type_expression {= | <>} entity_type_expression}

comparison_operator ::= = | > | >= | < | <= | <
Examples:

item.cost * 1.08 <= 100.00
CONCAT(person.lastName, ', ', person.firstName)) = 'Jones, Sam'
TYPE(e) = ExemptEmployee

4.6.4. Between Expressions

The syntax for the use of the comparison operator [NOT] BETWEEN in a conditional expression is as follows:

between_expression ::=
arithmetic_expression [NOT] BETWEEN arithmetic_expression AND arithmetic_expression
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression

103

The BETWEEN expression

x BETWEEN y AND z

is semantically equivalent to:

y <= x AND x <= z

The rules for unknown and NULL values in comparison operations apply. See Section 4.6.13.
Examples:

e p.age BETWEEN 15 and 19 is equivalent to p.age >= 15 AND p.age <= 19
* p.age NOT BETWEEN 15 and 19 is equivalent to p.age < 15 OR p.age > 19

In the following example, transactionHistory is a list of credit card transactions defined using an order column.

SELECT t
FROM CreditCard c¢ JOIN c.transactionHistory t
WHERE c.holder.name = 'John Doe' AND INDEX(t) BETWEEN @ AND 9

4.6.5. In Expressions

The syntax for the use of the comparison operator [NOT] INin a conditional expression is as follows:
in_expression ::=
{state_valued_path_expression | type_discriminator} [NOT] IN

{(in_item {, in_item}*) | (subquery) | collection_valued_input_parameter}
in_item ::= literal | single_valued_input_parameter

The state_valued_path_expression must have a string, numeric, date, time, timestamp, or enum value.

The literal and/or input parameter values must be like the abstract schema type of the state_valued_path_expression in
type. (See Section 4.6.14.)

The results of the subquery must be like the abstract schema type of the state_valued_path_expression in type. Subqueries
are discussed in Section 4.6.12.

Example 1:
o.country IN ('UK', "US', 'France")

is true for UK and false for Peru, and is equivalent to the expression

(o.country = "UK') OR (o.country = 'US") OR (o.country = 'France")

Example 2:

o.country NOT IN ('UK', 'US', 'France")
is false for UK and true for Peru, and is equivalent to the expression

NOT ((o.country = "UK') OR (o.country = 'US") OR (o.country = 'France"))

If an IN or NOT IN expression has a list of in_item expressions, there must be at least one item in the list. The value of
such expressions is determined according to the following rules:

104

o If the state_valued_path_expression in an IN or NOT IN expression evaluates to NULL or unknown, then the whole IN or
NOT IN expression evaluates to NULL or unknown.

e Otherwise, if the state_valued_path_expression and at least one in_item evaluate to the same value, the whole IN or NOT
IN expression evaluates to true.

* Otherwise, if the value of a state_valued_path_expression evaluates to a value distinct from the value of every in_item
expression, the whole IN or NOT IN expression evaluates to:

o false, if every in_item expression evaluates to a non-null value, or

o NULL or unknown if at least one in_item expression evaluates to null.

The list of values may be parameterized by a collection-valued input parameter. ' (See Section 4.7.4.)

o.country NOT IN :countries

4.6.6. Like Expressions

The syntax for the use of the comparison operator [NOT] LIKE in a conditional expression is as follows:

like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]

The string_expression must have a string value. The pattern_value is a string literal or a string-valued input parameter in
which an underscore (_) stands for any single character, a percent (%) character stands for any sequence of characters
(including the empty sequence), and all other characters stand for themselves. The optional escape_character is a single-

character string literal or a character-valued input parameter (i.e., char or Character) and is used to escape the special

meaning of the underscore and percent characters in pattern_value. "

Examples:

e address.phone LIKE '12%3"' is true for '123', '12993"' and false for '1234'
e asentence.word LIKE '1_se'is true for 'lose' and false for 'loose’
e aword.underscored LIKE '_%"' ESCAPE '\'is true for '_foo' and false for 'bar'

* address.phone NOT LIKE '12%3'is false for '123' and '12993' and true for '1234'

If the value of the string_expression or pattern_value is NULL or unknown, the value of the LIKE expression is unknown. If
the escape_character is specified and is NULL, the value of the LIKE expression is unknown.

4.6.7. Null Comparison Expressions

The syntax for the use of the comparison operator IS NULL in a conditional expression is as follows:

null_comparison_expression ::=
{single_valued_path_expression | input_parameter} IS [NOT] NULL

A null comparison expression tests whether or not the single-valued path expression or input parameter is a NULL value.

Null comparisons over instances of embeddable class types are not supported. Support for comparisons over
embeddables may be added in a future release of this specification.

4.6.8. Empty Collection Comparison Expressions

The syntax for the use of the comparison operator IS EMPTY in an empty_collection_comparison_expression is as follows:

empty_collection_comparison_expression ::=

105

collection_valued_path_expression IS [NOT] EMPTY

This expression tests whether or not the collection designated by the collection-valued path expression is empty (i.e,
has no elements).

Example:

SELECT o
FROM Order o
WHERE o.linelItems IS EMPTY

If the value of the collection-valued path expression in an empty collection comparison expression is unknown, the
value of the empty comparison expression is unknown.

4.6.9. Collection Member Expressions

The syntax for the use of the comparison operator MEMBER OF ™" in a collection_member_expression is as follows:

collection_member_expression ::=

entity_or_value_expression [NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=

single_valued_object_path_expression |

state_valued_path_expression |

simple_entity_or_value_expression
simple_entity_or_value_expression ::=

identification_variable |

input_parameter

literal

This expression tests whether the designated value is a member of the collection specified by the collection-valued path
expression.

Expressions that evaluate to embeddable types are not supported in collection member expressions. Support for use of
embeddables in collection member expressions may be added in a future release of this specification.

If the collection valued path expression designates an empty collection, the value of the MEMBER OF expression is FALSE
and the value of the NOT MEMBER OF expression is TRUE. Otherwise, if the value of the collection_valued_path_expression or
entity_or_value_expression in the collection member expression is NULL or unknown, the value of the collection member
expression is unknown.

Example:

SELECT p
FROM Person p
WHERE 'Joe' MEMBER OF p.nicknames

4.6.10. Exists Expressions

An EXISTS expression is a predicate that is true only if the result of the subquery consists of one or more values and that
is false otherwise.

The syntax of an exists expression is

exists_expression ::= [NOT] EXISTS (subquery)

Example:

106

SELECT DISTINCT emp
FROM Employee emp
WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

The result of this query consists of all employees whose spouses are also employees.

4.6.11. All or Any Expressions

An ALL conditional expression is a predicate over a subquery that is true if the comparison operation is true for all
values in the result of the subquery or the result of the subquery is empty. An ALL conditional expression is false if the
result of the comparison is false for at least one value of the result of the subquery, and is unknown if neither true nor
false.

An ANY conditional expression is a predicate over a subquery that is true if the comparison operation is true for some
value in the result of the subquery. An ANY conditional expression is false if the result of the subquery is empty or if the
comparison operation is false for every value in the result of the subquery, and is unknown if neither true nor false.
The keyword SOME is synonymous with ANY.

The comparison operators used with ALL or ANY conditional expressions are =, <, <=, >, >=, <>. The result of the subquery
must be like that of the other argument to the comparison operator in type. See Section 4.6.14.

The syntax of an ALL or ANY expression is specified as follows:

all_or_any_expression ::= {ALL | ANY | SOME} (subquery)

Example:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

The result of this query consists of all employees whose salaries exceed the salaries of all managers in their
department.

4.6.12. Subqueries

[12]

Subqueries may be used in the WHERE or HAVING clause.

The syntax for subqueries is as follows:

subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
subquery_from_clause ::=
FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration |
collection_member_declaration}*
subselect_identification_variable_declaration ::=
identification_variable_declaration |
derived_path_expression [AS] identification_variable {join}* |
derived_collection_member_declaration
simple_select_expression ::=

107

single_valued_path_expression
scalar_expression |
aggregate_expression |
identification_variable
derived_path_expression ::=
general_derived_path.single_valued_object_field |
general_derived_path.collection_valued_field
general_derived_path ::=
simple_derived_path |
treated_derived_path{.single_valued_object_field}*
simple_derived_path ::= superquery_identification_variable{.single_valued_object_field}*
treated_derived_path ::= TREAT(general_derived_path AS subtype)
derived_collection_member_declaration ::=
IN superquery_identification_variable.{single_valued_object_field.}*collection_valued_field

Examples:

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

Note that some contexts in which a subquery can be used require that the subquery be a scalar subquery (i.e., produce
a single result). This is illustrated in the following examples using numeric comparisons.

SELECT ¢
FROM Customer ¢
WHERE (SELECT AVG(o.price) FROM c.orders o) > 100

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (
SELECT AVG(c.balanceOwed)/2.0 FROM Customer c)

4.6.13. Null values

When the target of a reference does not exist in the database, its value is regarded as NULL. SQL NULL semantics [2]
defines the evaluation of conditional expressions containing NULL values.

The following is a brief description of these semantics:

* Comparison or arithmetic operations with a NULL value always yield an unknown value.
* Two NULL values are not considered to be equal, the comparison yields an unknown value.
* Comparison or arithmetic operations with an unknown value always yield an unknown value.

o The IS NULL and IS NOT NULL operators convert a NULL state field or single-valued object field value into the respective
TRUE or FALSE value.

* Boolean operators use three valued logic, defined by Table 1, Table 2, and Table 3.

Table 1. Definition of the AND Operator

AND T F U
T T F U
F F F F

108

AND T F U

Table 2. Definition of the OR Operator

OR T F 8]
T T T T
F T F U
U T U U

Table 3. Definition of the NOT Operator

NOT

T F
F T
U U

0 The Jakarta Persistence query language defines the empty string, '', as a string with length zero, which
is not equal to a NULL value. However, NULL values and empty strings may not always be distinguished
when queries are mapped to some databases. Application developers should therefore not rely on the
semantics of query comparisons involving the empty string and NULL value.

4.6.14. Equality and Comparison Semantics

Only the values of like types are permitted to be compared. A type is like another type if they correspond to the same
Java language type, or if one is a primitive Java language type and the other is the wrapped Java class type equivalent
(e.g., int and Integer are like types in this sense). There is one exception to this rule: it is valid to compare numeric
values for which the rules of numeric promotion apply. Conditional expressions attempting to compare non-like type
values are disallowed except for this numeric case.

Note that the arithmetic operators, the string concatenation operator, and comparison operators are
permitted to be applied to state fields and input parameters of the wrapped Java class equivalents to
the primitive numeric Java types.

Two entities of the same abstract schema type are equal if and only if they have the same primary key value.

Only equality/inequality comparisons over enums are required to be supported.

Comparisons over instances of embeddable class or map entry types are not supported.

The following examples illustrate the syntax and semantics of the Jakarta Persistence query language. These examples
are based on the example presented in Section 4.3.2.

Find all orders:
SELECT o

109

FROM Order o

Find all orders that need to be shipped to California:

SELECT o
FROM Order o
WHERE o.shippingAddress.state = 'CA'

Find all states for which there are orders:

SELECT DISTINCT o.shippingAddress.state
FROM Order o

Find all orders that have line items:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1

Note that the result of this query does not include orders with no associated line items. This query can also be written
as:

SELECT o
FROM Order o
WHERE o.lineItems IS NOT EMPTY

Find all orders that have no line items:

SELECT o
FROM Order o
WHERE o.lineItems IS EMPTY

Find all pending orders:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1.shipped = FALSE

Find all orders in which the shipping address differs from the billing address. This example assumes that the
application developer uses two distinct entity types to designate shipping and billing addresses.

SELECT o
FROM Order o
WHERE
NOT (o.shippingAddress.state = o.billingAddress.state AND
o.shippingAddress.city = o.billingAddress.city AND
o.shippingAddress.street = o.billingAddress.street)

If the application developer uses a single entity type in two different relationships for both the shipping address and
the billing address, the above expression can be simplified based on the equality rules defined in Section 4.6.14. The
query can then be written as:

SELECT o
FROM Order o
WHERE o.shippingAddress <> o.billingAddress

The query checks whether the same entity abstract schema type instance (identified by its primary key) is related to an
order through two distinct relationships.

110

4.6.14.1. Queries Using Input Parameters

The following query finds the orders for a product whose name is designated by an input parameter:

SELECT DISTINCT o
FROM Order o JOIN o.lineltems 1
WHERE 1.product.name = ?1

For this query, the input parameter must be of the type of the state field name, i.e., a string.

4.7. Scalar Expressions

Numeric, string, datetime, case, and entity type expressions result in scalar values.

Scalar expressions may be used in the SELECT clause of a query as well as in the WHERE " and HAVING clauses.

scalar_expression ::=
arithmetic_expression |
string_expression |
enum_expression |
datetime_expression |
boolean_expression |
case_expression |
entity_type_expression |
entity_id_or_version_function

4.7.1. Literals

A string literal is enclosed in single quotes—for example: 'literal'. A string literal that includes a single quote is
represented by two single quotes—for example: 'literal''s’. String literals in queries, like Java String literals, use
unicode character encoding. The use of Java escape notation is not supported in query string literals.

A numeric literal may be either:

* a decimal Java integer (int or long) literal
 aJava floating point (float or double) literal, or

e aliteral BigInteger or BigDecimal.

A suffix L, D, or F may be used to indicate the specific numeric type, in accordance with the Java Language Specification.
The suffix is not case-sensitive. The literal numeric value preceding the suffix must conform to the rules for Java
numeric literals established by the Java Language Specification.

A suffix BI or BD may be used to indicate a literal BigInteger or BigDecimal, respectively. The literal numeric value
preceding the suffix must be an exact or approximate SQL numeric literal. For a BigInteger literal, the numeric value
must be an exact integer literal.

Just as in Java, when a numeric literal has no suffix:

* an integer literal is interpreted as a Java int, and

« afloating point literal is interpreted as a Java double.
Support for hexadecimal and octal numeric literals is not required by this specification.
Enum literals support the use of Java enum literal syntax. The fully qualified enum class name must be specified.

The JDBC escape syntax may be used for the specification of date, time, and timestamp literals. For example:

111

SELECT o
FROM Customer c¢ JOIN c.orders o
WHERE c.name = 'Smith’
AND o.submissionDate < {d '2008-12-31'}

The portability of this syntax for date, time, and timestamp literals is dependent upon the JDBC driver in use.
Persistence providers are not required to translate from this syntax into the native syntax of the database or driver.

The boolean literals are TRUE and FALSE.
Entity type literals are specified by entity names—for example: Customer.

Although reserved literals appear in upper case, they are case-insensitive.

4.7.2. Identification Variables

All identification variables used in the WHERE or HAVING clause of a SELECT or DELETE statement must be declared in the FROM
clause, as described in Section 4.4.2. The identification variables used in the WHERE clause of an UPDATE statement must be
declared in the UPDATE clause.

Identification variables are existentially quantified in the WHERE and HAVING clause. This means that an identification
variable represents a member of a collection or an instance of an entity’s abstract schema type. An identification
variable never designates a collection in its entirety.

4.7.3. Path Expressions

It is illegal to use a collection_valued_path_expression within a WHERE or HAVING clause as part of a conditional expression
except in an empty_collection_comparison_expression, in a collection_member_expression, or as an argument to the SIZE
operator.

4.7.4. Input Parameters

An input parameter allows a value in the Java program to be safely interpolated into the text of the parameterized
query.

In a given query, either positional or named parameters may be used. Positional and named parameters must not be
mixed in a single query.

The persistence provider is required to support input parameters which occur in the WHERE clause or HAVING clause of a
query, or as the new value for an update item in the SET clause of an update statement.

o Note that if an input parameter value is null, comparison operations or arithmetic operations involving
the input parameter will result in an unknown value. See Section 4.6.13.

An input parameter might be single-valued or collection-valued. An input parameter which occurs directly to the right
of the IN keyword in an IN predicate, as defined in Section 4.6.5, is collection-valued. Every other input parameter is
single-valued

The API for the binding concrete arguments to query parameters is described in Section 3.11.

4.7.4.1. Positional Parameters

The following rules apply to positional input parameters.

112

» A positional parameter is designated by an integer, and prefixed with a ? symbol (question mark) in the text of the
query string. For example: ?1.

e Input parameters are numbered starting from 1.
* A given positional parameter may occur more than once in the query string.

* The ordering of the use of parameters within the text of the query string need not match the numbering of the
positional parameters.

4.7.4.2. Named Parameters

A named parameter is denoted by an identifier, and prefixed by the : symbol (colon) in the text of the query string. The
identifier name must follow the usual rules for identifiers specified in Section 4.4.1. Named parameters are case-
sensitive.

Example:

SELECT ¢
FROM Customer c
WHERE c.status = :stat

A given named parameter may occur more than once in the query string.

4.7.5. Arithmetic Expressions

The arithmetic operators are:

e +,-unary
o * [multiplication and division

¢ + -addition and subtraction
Arithmetic operations use numeric promotion.

Arithmetic functions are described in Section 4.7.7.2.

4.7.6. String concatenation operator

The binary concatenation operator is | |. Its operands must be string expressions.

4.7.7. Built-in String, Arithmetic, and Datetime Functional Expressions

The Jakarta Persistence query language includes the built-in functions described in Section 4.7.7.1, Section 4.7.7.2,
Section 4.7.7.3, which may be used in the SELECT, WHERE or HAVING clause of a query. The invocation of predefined database
functions and user-defined database functions is described in Section 4.7.9.

If the value of any argument to a functional expression is null or unknown, the value of the functional expression is
unknown.

4.7.7.1. String Functions

functions_returning_strings ::=
CONCAT(string_expression, string_expression {, string_expression}*) |
SUBSTRING(string_expression,
arithmetic_expression [, arithmetic_expression]) |
TRIM([[trim_specification] [trim_character] FROM] string_expression) |
LOWER(string_expression) |

113

UPPER(string_expression) |
REPLACE(string_expression, string_expression, string_expression) |
LEFT(string_expression, arithmetic_expression) |
RIGHT(string_expression, arithmetic_expression)

trim_specification ::= LEADING | TRAILING | BOTH

functions_returning_numerics ::=
LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression])

The CONCAT function returns a string that is a concatenation of its arguments.

The second and third arguments of the SUBSTRING function denote the starting position and length of the substring to be
returned. These arguments are integers. The third argument is optional. If it is not specified, the substring from the
start position to the end of the string is returned. The first position of a string is denoted by 1. The SUBSTRING function
returns a string.

The TRIM function trims the specified character from a string. If the character to be trimmed is not specified, it will be
assumed to be space (or blank). The optional trim_character is a single-character string literal or a character-valued
input parameter (i.e., char or Character) ™. If a trim specification is not provided, it defaults to BOTH. The TRIM function
returns the trimmed string.

The LOWER and UPPER functions convert a string to lower and upper case, respectively, with regard to the locale of the
database. They return a string.

The LEFT and RIGHT functions return the leftmost or rightmost substring, respectively, of the first argument whose length
is given by the second argument.

The REPLACE function replaces all occurrences within the first argument string of the second argument string with the
third argument string.

The LOCATE function returns the position at which one string occurs within a second string, optionally ignoring any
occurrences that begin before a specified character position in the second string. It returns the first character position
within the second string (after the specified character position, if any) at which the first string occurs, as an integer,
where the first character of the second string is denoted by 1. That is, the first argument is the string to be searched for;
the second argument is the string to be searched in; the optional third argument is an integer representing the
character position at which the search starts (by default, 1, the first character of the second string). If the first string
does not occur within the second string, 0 is returned.™

The LENGTH function returns the length of the string in characters as an integer.

4.7.7.2. Arithmetic Functions

functions_returning_numerics ::=
ABS(arithmetic_expression) |
CEILING(arithmetic_expression) |
EXP(arithmetic_expression) |
FLOOR(arithmetic_expression) |
LN(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression) |
POWER(arithmetic_expression, arithmetic_expression) |
ROUND(arithmetic_expression, arithmetic_expression) |
SIGN(arithmetic_expression) |
SQRT(arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable) |
extract_datetime_field

114

The ABS, CEILING, and FLOOR functions accept a numeric argument and return a number (integer, float, or double) of the
same type as the argument.

The SIGN function accepts a numeric argument and returns an integer.
The SQRT, EXP, and LN functions accept a numeric argument and return a double.
The MOD function accepts two integer arguments and returns an integer.

The ROUND function accepts a numeric argument and an integer argument and returns a number of the same type as the
first argument.

The POWER function accepts two numeric arguments and returns a double.

Numeric arguments to these functions may correspond to the numeric Java object types as well as the primitive
numeric types.

The SIZE function returns an integer value, the number of elements of the collection. If the collection is empty, the SIZE
function evaluates to zero.

The INDEX function returns an integer value corresponding to the position of its argument in an ordered list. The INDEX
function can only be applied to identification variables denoting types for which an order column has been specified.

In the following example, studentWaitlist is a list of students for which an order column has been specified:

SELECT w.name

FROM Course ¢ JOIN c.studentWaitlist w
WHERE c.name = 'Calculus'

AND INDEX(w) = 0

4.7.7.3. Datetime Functions

functions_returning_datetime :=
CURRENT_DATE |
CURRENT_TIME |
CURRENT_TIMESTAMP |
LOCAL DATE |
LOCAL TIME |
LOCAL DATETIME |
extract_datetime_part

The functions LOCAL DATE, LOCAL TIME, and LOCAL DATETIME return the value of the current date, time, or timestamp on the
database server, respectively. Their types are java.time.LocalDate, java.time.LocalTime, and java.time.LocalDateTime
respectively.

The functions CURRENT_DATE, CURRENT__TIME, and CURRENT_TIMESTAMP return the value of the current date, time, or timestamp
on the database server, respectively. Their types are java.sql.Date, java.sql.Time, and java.sql.Timestamp respectively.

The EXTRACT function takes a datetime argument and one of the following field type identifiers: YEAR, QUARTER, MONTH,
WEEK, DAY, HOUR, MINUTE, SECOND, DATE, TIME.

EXTRACT returns the value of the corresponding field or part of the datetime.

extract_datetime_field :=
EXTRACT (datetime_field FROM datetime_expression)

datetime_field := identification_variable

For the following field type identifiers, EXTRACT returns an integer value:

115

* YEAR means the calendar year.

QUARTER means the calendar quarter, numbered from 1 to 4.

MONTH means the calendar month of the year, numbered from 1.
e WEEK means the ISO-8601 week number.
* DAY means the calendar day of the month, numbered from 1.

* HOUR means the hour of the day in 24-hour time, numbered from 0 to 23.

MINUTE means the minute of the hour, numbered from 0 to 59.
For the SECOND field type identifier, EXTRACT returns a floating point value:

 SECOND means the second of the minute, numbered from 0 to 59, including a fractional part representing fractions of
a second.

Itis illegal to pass a datetime argument which does not have the given field type to EXTRACT.

extract_datetime_part :=
EXTRACT (datetime_part FROM datetime_expression)

datetime_part := identification_variable

For the following field type identifiers, EXTRACT returns a part of the datetime value:

* DATE means the date part of a datetime.

o TIME means the time part of a datetime.

It is illegal to pass a datetime argument which does not have the given part to EXTRACT.

FROM Course ¢ WHERE c.year = EXTRACT(YEAR FROM LOCAL DATE)

4.7.8. Typecasts

The CAST function converts an expression of one type to an expression of a different type.

string_cast_function::=

CAST(scalar_expression AS STRING)
arithmetic_cast_function::=

CAST(string_expression AS {INTEGER | LONG | FLOAT | DOUBLE})

The persistence provider is required to accept typecasts of the following forms:

* any scalar expression to STRING

* any string expression to INTEGER, LONG, FLOAT, or DOUBLE
Typecast expressions are evaluated by the database, with semantics that vary somewhat between different databases.
When a typecast occurs as a select expression, the result type of the select expression is:

* java.lang.String for a cast to STRING

* java.lang.Integer, java.lang.Long, java.lang.Float, or java.lang.Double for a cast to INTEGER, LONG, FLOAT, or DOUBLE,
respectively

4.7.9. Invocation of Predefined and User-defined Database Functions

The invocation of functions other than the built-in functions of the Jakarta Persistence query language is supported by
means of the function_invocation syntax. This includes the invocation of predefined database functions and user-

116

defined database functions.

function_invocation ::= FUNCTION(function_name {, function_arg}*)

function_arg ::=
literal |
state_valued_path_expression
input_parameter
scalar_expression

The function_name argument is a string that denotes the database function that is to be invoked. The arguments must be
suitable for the database function that is to be invoked. The result of the function must be suitable for the invocation
context.

The function may be a database-defined function or a user-defined function. The function may be a scalar function or
an aggregate function.

Applications that use the function_invocation syntax will not be portable across databases.

Example:

SELECT ¢
FROM Customer c
WHERE FUNCTION('hasGoodCredit', c.balance, c.creditLimit)

4.7.10. Case Expressions

The following forms of case expressions are supported: general case expressions, simple case expressions, coalesce

expressions, and nullif expressions.™

case_expression ::=
general_case_expression |
simple_case_expression |
coalesce_expression |
nullif_expression

general_case_expression ::=
CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause ::= WHEN conditional_expression THEN scalar_expression

simple_case_expression ::=
CASE case_operand simple_when_clause {simple_when_clause}*
ELSE scalar_expression

END
case_operand ::= state_valued_path_expression | type_discriminator
simple_when_clause ::= WHEN scalar_expression THEN scalar_expression
coalesce_expression ::= COALESCE(scalar_expression {, scalar_expression}+)
nullif_expression ::= NULLIF(scalar_expression, scalar_expression)
Examples:

UPDATE Employee e
SET e.salary =
CASE WHEN e.rating = 1 THEN e.salary * 1.1
WHEN e.rating = 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

UPDATE Employee e

117

SET e.salary =
CASE e.rating WHEN 1 THEN e.salary * 1.1
WHEN 2 THEN e.salary * 1.05
ELSE e.salary * 1.01
END

SELECT e.name,
CASE TYPE(e) WHEN Exempt THEN 'Exempt'
WHEN Contractor THEN 'Contractor'
WHEN Intern THEN 'Intern'
ELSE 'NonExempt'
END
FROM Employee e
WHERE e.dept.name = 'Engineering'

SELECT e.name,
f.name,
CONCAT(CASE WHEN f.annualMiles > 50000 THEN 'Platinum '
WHEN f.annualMiles > 25000 THEN 'Gold '
ELSE "'
END,
'Frequent Flyer")
FROM Employee e JOIN e.frequentFlierPlan f

4.7.11. Identifier and Version Functions

The ID and VERSION functions evaluate to the primary key or version, respectively, of their argument, which must be an
identification variable assigned an entity abstract schema type or a path expression resolving to a one-to-one or many-
to-one relationship field. For example, if Person has a primary key field named ssn, then ID(person) is a synonym for

person.ssn.

entity_id_or_version_function ::= id_function | version_function
id_function ::=
ID(general_identification_variable |
single_valued_object_path_expression)
version_function ::=
VERSION(general_identification_variable |
single_valued_object_path_expression)

The result type of an ID or VERSION function expression is the primary key type or version type of the argument entity,
respectively.

The result may be compared to an input parameter:

DELETE from Employee
WHERE id(this) = :id
AND version(this) = :version

A persistence provider is not required to support the use of the ID function for entities with composite primary keys.

4.7.12. Entity Type Expressions and Literal Entity Types

An entity type expression can be used to restrict query polymorphism. The syntax of an entity type expression is as
follows:

entity_type_expression ::=
type_discriminator
entity_type_literal |
input_parameter

type_discriminator ::=

118

TYPE(general_identification_variable |
single_valued_object_path_expression |

input_parameter)

parameter.

representing the entity class.

Examples:

SELECT e
FROM Employee e
WHERE TYPE(e) IN (Exempt, Contractor)

SELECT e
FROM Employee e
WHERE TYPE(e) IN (:empTypel, :empType2)

SELECT e
FROM Employee e
WHERE TYPE(e) IN :empTypes

SELECT TYPE(e)
FROM Employee e
WHERE TYPE(e) <> Exempt

4.7.13. Numeric Expressions and Type Promotion

The TYPE operator returns the exact type of its argument, which must be an identification variable assigned an entity
abstract schema type, a path expression resolving to a one-to-one or many-to-one relationship field, or an input

An entity_type_literal specifies a literal entity type by its entity name defined above in Section 4.3.1.

For an input parameter, the entity type must be specified by calling Query.setParameter () with the java.lang.Class object

Every numeric expression in a query is assigned a Java numeric type according to the following rules:

* An expression that corresponds to a persistent state field is of the same type as that persistent state field.

* An expression that corresponds to one of arithmetic functions described in Section 4.7.7.2 is of the type defined by

Section 4.7.7.2.

* An expression that corresponds to one of an aggregate functions described in Section 4.9.5 is of the type defined by

Section 4.9.5.

type is determined by its operand types, and by the following rules

For a CASE expression, COALESCE expression, NULLIF expression, or arithmetic operator expression (+, -, *, /), the numeric

[17]

If there is an operand of type Double or double, the expression is of type Double;

otherwise, if there is an operand of type Float or float, the expression is of type Float;

otherwise, if there is an operand of type BigDecimal, the expression is of type BigDecimal;

otherwise, if there is an operand of type BigInteger, the expression is of type BigInteger, unless the operator is /

(division), in which case the expression type is not defined here;

otherwise, if there is an operand of type Long or long, the expression is of type Long, unless the operator is / (division),

in which case the expression type is not defined here;

otherwise, if there is an operand of integral type, the expression is of type Integer, unless the operator is / (division),

in which case the expression type is not defined here.

o Users should note that the semantics of the SQL division operation are not standard across databases.
In particular, when both operands are of integral types, the result of the division operation will be an

119

integral type in some databases, and an non-integral type in others. Portable applications should not
assume a particular result type.

For numeric expressions occurring in the SELECT clause, these rules determine the Java object type returned in the
query result list.

4.8. GROUP BY, HAVING

The GROUP BY construct enables the aggregation of result values according to a set of properties. The HAVING construct
enables conditions to be specified that further restrict the query result. Such conditions are restrictions upon the
groups.

The syntax of the GROUP BY and HAVING clauses is as follows:

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable

having_clause ::= HAVING conditional_expression

If a query contains both a WHERE clause and a GROUP BY clause, the effect is that of first applying the where clause, and
then forming the groups and filtering them according to the HAVING clause. The HAVING clause causes those groups to be
retained that satisfy the condition of the HAVING clause.

The requirements for the SELECT clause when GROUP BY is used follow those of SQL: namely, any item that appears in the
SELECT clause (other than as an aggregate function or as an argument to an aggregate function) must also appear in the
GROUP BY clause. In forming the groups, null values are treated as the same for grouping purposes.

Grouping by an entity is permitted. In this case, the entity must contain no serialized state fields or lob-valued state
fields that are eagerly fetched. Grouping by an entity that contains serialized state fields or lob-valued state fields is not
portable, since the implementation is permitted to eagerly fetch fields or properties that have been specified as LAZY.

Grouping by embeddables is not supported.

The HAVING clause is used to filter over the groups, and can contain aggregate functions over attributes included in the
groups and/or functions or other query language operators over the attributes that are used for grouping. It is not
required that an aggregate function used in the HAVING clause also be used in the SELECT clause.

If there is no GROUP BY clause and the HAVING clause is used, the result is treated as a single group, and the select list can
only consist of aggregate functions. The use of HAVING in the absence of GROUP BY is not required to be supported by an
implementation of this specification. Portable applications should not rely on HAVING without the use of GROUP BY.

Examples:

SELECT c.status, AVG(c.filledOrderCount), COUNT(c)
FROM Customer c

GROUP BY c.status

HAVING c.status IN (1, 2)

SELECT c.country, COUNT(c)
FROM Customer c

GROUP BY c.country

HAVING COUNT(c) > 30

SELECT ¢, COUNT(o)

FROM Customer c¢ JOIN c.orders o
GROUP BY ¢

HAVING COUNT(o) >= 5

120

4.9. SELECT Clause

The SELECT clause specifies the query result, as a list of items to be returned by the query.
The SELECT clause can contain one or more of the following elements:

 an identification variable that ranges over an abstract schema type,
¢ asingle-valued path expression,

* ascalar expression,

* an aggregate expression,

* a constructor expression.

The SELECT clause has the following syntax:

select_clause ::= SELECT [DISTINCT] select_item {, select_item}*
select_item ::= select_expression [[AS] result_variable]
select_expression ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable |

OBJECT(identification_variable) |

constructor_expression
constructor_expression ::=

NEW constructor_name (constructor_item {, constructor_item}*)
constructor_item ::=

single_valued_path_expression |

scalar_expression |

aggregate_expression |

identification_variable
aggregate_expression ::=

{AVG | MAX | MIN | SUM} ([DISTINCT] state_valued_path_expression) |

COUNT ([DISTINCT] identification_variable | state_valued_path_expression

single_valued_object_path_expression) |
function_invocation

For example:

SELECT c.id, c.status
FROM Customer c¢ JOIN c.orders o
WHERE o.count > 100

In the following example, videoInventory is a Map from the entity Movie to the number of copies in stock:

SELECT v.location.street, KEY(i).title, VALUE(i)
FROM VideoStore v JOIN v.videoInventory i
WHERE v.location.zipcode = '94301' AND VALUE(i) > 0

Note that the SELECT clause must be specified to return only single-valued expressions. The query below is therefore not
valid:

SELECT o.lineItems FROM Order AS o

The DISTINCT keyword is used to specify that duplicate values must be eliminated from the query result.
If DISTINCT is not specified, duplicate values are not eliminated.

The result of DISTINCT over embeddable objects or map entry results is undefined.

121

Standalone identification variables in the SELECT clause may optionally be qualified by the 0BJECT operator."® The SELECT
clause must not use the 0BJECT operator to qualify path expressions.

A result_variable assigns a name to a select_item in the query result. The result variable must be a valid identifier, as
defined in Section 4.4.1, must not be a reserved identifier, and must not collide with any identification variable
declared in the FROM clause. A result variable may be used to refer to an element of the select clause from an item in the
ORDER BY clause, as specified in Section 4.10. Like identification variables, result variables are case-insensitive.

Example:

SELECT ¢, COUNT(1) AS itemCount

FROM Customer c¢ JOIN c.orders o JOIN o.lineltems 1
WHERE c.address.state = 'CA'

GROUP BY ¢

ORDER BY itemCount

The SELECT clause is optional. A query with a missing SELECT clause is interpreted as if it had the following single-item
SELECT clause: select this, where this is the implicit identification variable.

Thus, the following queries are equivalent:

FROM Order
WHERE customer.lastname = 'Smith’
AND customer.firstname= 'John'

SELECT this

FROM Order

WHERE this.customer.lastname = 'Smith'
AND this.customer.firstname= 'John'

SELECT ord

FROM Order AS ord

WHERE ord.customer.lastname = 'Smith'
AND ord.customer.firstname= 'John'

If the implicit identification variable has not been assigned an abstract schema type, the SELECT clause is required.

4.9.1. Result Type of the SELECT Clause

The type of the query result specified by the SELECT clause of a query is an entity abstract schema type, a state field type,
the result of a scalar expression, the result of an aggregate function, the result of a construction operation, or some
sequence of these.

The result type of the SELECT clause is defined by the result types of the select expressions contained in it. When
multiple select expressions are used in the SELECT clause, the elements in this result correspond in order to the order of
their specification in the SELECT clause and in type to the result types of each of the select expressions.

The type of the result of a select_expression is as follows:

» The result type of an identification_variable is the type of the entity object or embeddable object to which the
identification variable corresponds. The type of an identification_variable that refers to an entity abstract schema
type is the type of the entity to which that identification variable corresponds or a subtype as determined by the
object/relational mapping.

* The result type of a single_valued_path_expression that is a state_field_path_expression is the same type as the
corresponding state field of the entity or embeddable class. If the state field of the entity is a primitive type, the
result type is the corresponding object type.

122

» The result type of a single_valued_path_expression that is a single_valued_object_path_expression is the type of the entity
object or embeddable object to which the path expression corresponds. A single_valued_object_path_expression that
results in an entity object will result in an entity of the type of the relationship field or the subtype of the
relationship field of the entity object as determined by the object/relational mapping.

* The result type of a single_valued_path_expression that is an identification_variable to which the KEY or VALUE function
has been applied is determined by the type of the map key or value respectively, as defined by the above rules.

* The result type of a single_valued_path_expression that is an identification_variable to which the ENTRY function has
been applied is java.util.Map.Entry, where the key and value types of the map entry are determined by the above
rules as applied to the map key and map value respectively.

» The result type of a scalar_expression is the type of the scalar value to which the expression evaluates. The result
type of a numeric scalar_expression is defined in Section 4.7.13.

« The result type of an entity_type_expression scalar expression is the Java class to which the resulting abstract schema
type corresponds.

* The result type of aggregate_expression is defined in Section 4.9.5.

* The result type of a constructor_expression is the type of the class for which the constructor is defined. The types of
the arguments to the constructor are defined by the above rules.

4.9.2. Constructor Expressions in the SELECT Clause

A constructor may be used in the SELECT list to return an instance of a Java class. The specified class is not required to be
an entity or to be mapped to the database. The constructor name must be fully qualified.

If an entity class name is specified as the constructor name in the SELECT NEW clause, the resulting entity instances will
be in either the new or the detached state, depending on whether a primary Kkey is retrieved for the constructed object.

If a single_valued_path_expression or identification_variable that is an argument to the constructor references an entity,
the resulting entity instance referenced by that single_valued_path_expression or identification_variable will be in the
managed state.

For example,

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.count)
FROM Customer c¢ JOIN c.orders o
WHERE o.count > 100

4.9.3. Null Values in the Query Result

If the result of a query corresponds to an association field or state field whose value is null, that null value is returned
in the result of the query method. The IS NOT NULL construct can be used to eliminate such null values from the result
set of the query.

Note, however, that state field types defined in terms of Java numeric primitive types cannot produce NULL values in the

query result. A query that returns such a state field type as a result type must not return a null value.

4.9.4. Embeddables in the Query Result

If the result of a query corresponds to an identification variable or state field whose value is an embeddable, the
embeddable instance returned by the query will not be in the managed state (i.e., it will not be part of the state of any
managed entity).

In the following example, the Address instances returned by the query will reference Phone instances. While the Phone
instances will be managed, the Address instances referenced by the addr result variable will not be. Modifications to

123

these embeddable instances will have no effect on persistent state.

public class Employee {
int 1id;
Address address;

/] ...

public class Address {
String street;

/] ...

Phone phone; // fetch=EAGER

public class Phone {
int 1id;
/] ...

(mappedBy="address.phone")
Employee emp; // fetch=EAGER

SELECT e.address AS addr
FROM Employee e

4.9.5. Aggregate Functions in the SELECT Clause

The result of a query may be the result of an aggregate function applied to a path expression.

The following aggregate functions can be used in the SELECT clause of a query: AVG, COUNT, MAX, MIN, SUM, aggregate
functions defined in the database.

For all aggregate functions except COUNT, the path expression that is the argument to the aggregate function must
terminate in a state field. The path expression argument to COUNT may terminate in either a state field or a association
field, or the argument to COUNT may be an identification variable.

Arguments to the functions SUM and AVG must be numeric. Arguments to the functions MAX and MIN must correspond to
orderable state field types (i.e., numeric types, string types, character types, or date types).

The Java type that is contained in the result of a query using an aggregate function is as follows:

e COUNT returns Long.
o MAX, MIN return the type of the state field to which they are applied.
* AVG returns Double.

* SUMreturns Long when applied to state fields of integral types (other than BigInteger); Double when applied to state
fields of floating point types; BigInteger when applied to state fields of type BigInteger; and BigDecimal when applied
to state fields of type BigDecimal.

Null values are eliminated before the aggregate function is applied, regardless of whether the keyword DISTINCT is

124

specified.

If SUM, AVG, MAX, or MIN is used, and there are no values to which the aggregate function can be applied, the result of the
aggregate function is NULL.

If COUNT is used, and there are no values to which COUNT can be applied, the result of the aggregate function is 0.

The argument to an aggregate function may be preceded by the keyword DISTINCT to specify that duplicate values are to
be eliminated before the aggregate function is applied."”

The use of DISTINCT with COUNT is not supported for arguments of embeddable types or map entry types.

The invocation of aggregate database functions, including user defined functions, is supported by means of the FUNCTION
operator. See Section 4.7.9.

The following query returns the average order quantity:

SELECT AVG(o.quantity) FROM Order o

The following query returns the total cost of the items that John Smith has ordered.

SELECT SUM(1.price)
FROM Order o JOIN o.lineItems 1 JOIN o.customer c
WHERE c.lastname = 'Smith"' AND c.firstname = 'John'

The following query returns the total number of orders.

SELECT COUNT(o) FROM Order o

The following query counts the number of items in John Smith’s order for which prices have been specified.

SELECT COUNT(1.price)
FROM Order o JOIN o.lineItems 1 JOIN o.customer c
WHERE c.lastname = 'Smith"' AND c.firstname = 'John'

Note that this is equivalent to:

SELECT COUNT(1)
FROM Order o JOIN o.lineItems 1 JOIN o.customer c
WHERE c.lastname = 'Smith" AND c.firstname = 'John' AND 1.price IS NOT NULL

4.10. ORDER BY Clause

The ORDER BY clause specifies how the results of a query should be sorted. The syntax of the ORDER BY clause is:

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= orderby_expression [ASC | DESC] [NULLS {FIRST | LAST}]
orderby_expression ::=

state_field_path_expression |

general_identification_variable |

result_variable |

scalar_expression

The ORDER BY clause specifies a list of items. Each orderby_expression must be one of the following:

1. A state_field_path_expression evaluating to an orderable state field of an entity or embeddable class abstract schema
type designated in the SELECT clause by either:

125

> ageneral_identification_variable, or
o asingle_valued_object_path_expression.
2. A state_field_path_expression evaluating to the same state field of the same entity or embeddable abstract schema
type as a state_field_path_expression in the SELECT clause.
3. A general_identification_variable evaluating to the same map field of the same entity or embeddable abstract
schema type as a general_identification_variable in the SELECT clause.
4. Areference to a result_variable declared by an orderable item in the SELECT clause. The orderable item must be an
aggregate_expression, a scalar_expression, Or a state_field_path_expression.
5. Any scalar_expression involving only state_field_path_expressions which would be allowed according to items 1 or 2
above.

Depending on the database, arbitrary scalar expressions may not be allowed in the ORDER BY clause. Therefore,
applications which require portability between databases should not depend on the use of a scalar expression in ORDER
BY if it is only permitted by item 5.

For example, the four queries below are legal.

SELECT o

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA'

ORDER BY o.quantity DESC, o.totalcost

SELECT o.quantity, a.zipcode

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA'

ORDER BY o.quantity, a.zipcode

SELECT o.quantity, o.cost*1.08 AS taxedCost, a.zipcode
FROM Customer c JOIN c.orders o JOIN c.address a

WHERE a.state = 'CA' AND a.county = 'Santa (lara'
ORDER BY o.quantity, taxedCost, a.zipcode

SELECT AVG(o.quantity) as q, a.zipcode

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA'

GROUP BY a.zipcode

ORDER BY q DESC

The following query is legal, but might not be supported on every database.

SELECT ¢, o

FROM Customer ¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA’

ORDER BY UPPER(c.lastname), UPPER(c.firstname)

The following two queries are not legal because the orderby_item is not reflected in the SELECT clause of the query.

SELECT p.product_name

FROM Order o JOIN o.lineItems 1 JOIN 1.product p JOIN o.customer c
WHERE c.lastname = 'Smith' AND c.firstname = 'John'

ORDER BY p.price

SELECT p.product_name
FROM Order o, IN(o.lineItems) 1 JOIN o.customer c

WHERE c.lastname = 'Smith"' AND c.firstname = 'John'
ORDER BY o.quantity

The keyword ASC specifies that ascending ordering is used for the associated orderby_item; the keyword DESC specifies

126

that descending ordering is used. If neither keyword is explicitly specified, ascending ordering is the default.
The interpretation of ascending or descending order is determined by the database, but, in general:

¢ ascending order for numeric values means smaller values first, while descending order means larger values first,
and

* strings are sorted lexicographically, using a database-dependent collation.
The keyword NULLS specifies the ordering of null values, either FIRST or LAST.

¢ FIRST means that results are sorted so that all null values occur before all non-null values.

* LAST means that results are sorted so that all null values occur after all non-null values.
If NULLS is not specified, the database determines whether null values occur first or last.

Items occurring earlier in the ORDER BY clause take precedence. That is, an item occurring later in the ORDER BY clause is
only used to resolve "ties" between results which cannot be unambiguously ordered using only earlier items.

The order of query results must be preserved in the result list or stream returned by a query execution method when
an ORDER BY clause is specified.

4.11. Bulk Update and Delete Operations

Bulk update and delete operations apply to entities of a single entity class (together with its subclasses, if any). Only one
entity abstract schema type may be specified in the FROM or UPDATE clause.

The syntax of these operations is as follows:

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE entity_name [[AS] identification_variable]
SET update_item {, update_item}*
update_item ::= [identification_variable.]{single_valued_embeddable_object_field.}*
{state_field | single_valued_object_field} = new_value
new_value ::=
scalar_expression |
simple_entity_expression |
NULL

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM entity_name [[AS] identification_variable]

The syntax of the WHERE clause is described in Section 4.5.
A delete operation only applies to entities of the specified class and its subclasses. It does not cascade to related entities.
The new_value specified for an update operation must be compatible in type with the field to which it is assigned.

Bulk update maps directly to a database update operation, bypassing optimistic locking checks. Portable applications
must manually update the value of the version column, if desired, and/or manually validate the value of the version
column.

The persistence context is not synchronized with the result of the bulk update or delete.

o Caution should be used when executing bulk update or delete operations because they may result in
inconsistencies between the database and the entities in the active persistence context. In general, bulk
update and delete operations should only be performed within a transaction in a new persistence
context or before fetching or accessing entities whose state might be affected by such operations._

127

Examples:

DELETE
FROM Customer c
WHERE c.status = "inactive'

DELETE

FROM Customer c

WHERE c.status = "inactive'
AND c.orders IS EMPTY

UPDATE Customer c
SET c.status = 'outstanding'
WHERE c.balance < 10000

UPDATE Employee e

SET e.address.building = 22

WHERE e.address.building = 14
AND e.address.city = 'Santa (lara’
AND e.project = 'Jakarta EE'

4.12. BNF

BNF notation summary:

e { -+ } grouping
e [-+] optional constructs
e * Zero or more

* +0ne or more

| alternates

The following is the BNF for the Jakarta Persistence query language.

QL_statement ::= select_statement | update_statement | delete_statement
select_statement ::= union
union ::= intersection | union {UNION [ALL] | EXCEPT [ALL]} intersection
intersection ::= query_expression | intersection INTERSECT [ALL] query_expression
query_expression ::= select_query | (union)
select_query ::= [select_clause] from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]
update_statement ::= update_clause [where_clause]
delete_statement ::= delete_clause [where_clause]
from_clause ::=
FROM {this_implicit_variable | identification_variable_declarations}
this_implicit_variable ::= entity_name
identification_variable_declarations ::=
identification_variable_declaration
{, {identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration {join | fetch_join}*
range_variable_declaration ::= entity_name [AS] identification_variable
join ::= range_join | path_join
range_join ::= join_spec range_variable_declaration [join_condition]
path_join ::=

join_spec join_association_path_expression [AS] identification_variable [join_condition]

fetch_join ::= join_spec FETCH join_association_path_expression

join_spec ::= [INNER | LEFT [OUTER]] JOIN

join_condition ::= ON conditional_expression

join_association_path_expression ::=
join_collection_valued_path_expression |
join_single_valued_path_expression |
TREAT(join_collection_valued_path_expression AS subtype) |
TREAT(join_single_valued_path_expression AS subtype)

128

join_collection_valued_path_expression ::=

[identification_variable.]{single_valued_embeddable_object_field.}* collection_valued_field

join_single_valued_path_expression ::=

[identification_variable.]{single_valued_embeddable_object_field.}* single_valued_object_field

collection_member_declaration ::=
IN (collection_valued_path_expression) [AS] identification_variable
qualified_identification_variable ::=
map_field_identification_variable |
ENTRY(identification_variable)
map_field_identification_variable ::=
KEY(identification_variable) |
VALUE(identification_variable)
single_valued_path_expression ::=
qualified_identification_variable |
TREAT(qualified_identification_variable AS subtype) |
state_field_path_expression |
single_valued_object_path_expression
general_identification_variable ::=
identification_variable |
map_field_identification_variable

general_subpath ::= simple_subpath | treated_subpath{.single_valued_object_field}*

simple_subpath ::=

general_identification_variable |

general_identification_variable{.single_valued_object_field}*
treated_subpath ::= TREAT(general_subpath AS subtype)
state_field_path_expression ::= [general_subpath.]state_field
state_valued_path_expression ::=

state_field_path_expression | general_identification_variable
single_valued_object_path_expression ::=

general_subpath.single_valued_object_field
collection_valued_path_expression ::= general_subpath.{collection_valued_field}
update_clause ::

SET update_item {, update_item}*

update_item ::

[identification_variable.]{single_valued_embeddable_object_field.}*

UPDATE entity_name [[AS] identification_variable]

{state_field | single_valued_object_field} = new_value

new_value ::=

scalar_expression |
simple_entity_expression |

NULL

delete_clause ::
select_clause ::

select_item ::

select_expression ::

S

DELETE FROM entity_name [[AS] identification_variable]
SELECT [DISTINCT] select_item {, select_item}*
elect_expression [[AS] result_variable]

single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable |
OBJECT(identification_variable) |
constructor_expression
constructor_expression ::=
NEW constructor_name (constructor_item {, constructor_item}*)

constructor_it

em ::=

single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
aggregate_expression ::=
{AVG | MAX | MIN | SUM} ([DISTINCT] state_valued_path_expression) |
COUNT ([DISTINCT] identification_variable | state_valued_path_expression
single_valued_object_path_expression) |
function_invocation

where_clause

groupby_clause :

groupby_item ::

having_clause ::

orderby_clause :
orderby_item ::

::= WHERE conditional_expression

1= GROUP BY groupby_item {, groupby_item}*

single_valued_path_expression | identification_variable
HAVING conditional_expression

= ORDER BY orderby_item {, orderby_item}*
orderby_expression [ASC | DESC] [NULLS {FIRST | LAST}]

129

orderby_expression ::=
state_field_path_expression |
general_identification_variable |
result_variable |
scalar_expression
subquery ::= simple_select_clause subquery_from_clause [where_clause]
[groupby_clause] [having_clause]
subquery_from_clause ::=
FROM subselect_identification_variable_declaration
{, subselect_identification_variable_declaration | collection_member_declaration}*
subselect_identification_variable_declaration ::=
identification_variable_declaration |
derived_path_expression [AS] identification_variable {join}* |
derived_collection_member_declaration
derived_path_expression ::=
general_derived_path.single_valued_object_field |
general_derived_path.collection_valued_field
general_derived_path ::=
simple_derived_path |
treated_derived_path{.single_valued_object_field}*
simple_derived_path ::= superquery_identification_variable{.single_valued_object_field}*
treated_derived_path ::= TREAT(general_derived_path AS subtype)
derived_collection_member_declaration ::=
IN superquery_identification_variable.{single_valued_object_field.}*collection_valued_field
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::=
single_valued_path_expression |
scalar_expression |
aggregate_expression |
identification_variable
scalar_expression ::=
arithmetic_expression |
string_expression |
enum_expression |
datetime_expression |
boolean_expression |
case_expression |
entity_type_expression |
entity_id_or_version_function
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::=
comparison_expression |
between_expression |
in_expression |
like_expression |
null_comparison_expression |
empty_collection_comparison_expression
collection_member_expression |
exists_expression
between_expression ::=
arithmetic_expression [NOT] BETWEEN
arithmetic_expression AND arithmetic_expression |
string_expression [NOT] BETWEEN string_expression AND string_expression |
datetime_expression [NOT] BETWEEN datetime_expression AND datetime_expression
in_expression ::=
{state_valued_path_expression | type_discriminator} [NOT] IN
{(in_item{, in_item}*) | (subquery) | collection_valued_input_parameter}
in_item ::= literal | single_valued_input_parameter
like_expression ::=
string_expression [NOT] LIKE pattern_value [ESCAPE escape_character]
null_comparison_expression ::=
{single_valued_path_expression | input_parameter} IS [NOT] NULL
empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

130

collection_member_expression ::= entity_or_value_expression

[NOT] MEMBER [OF] collection_valued_path_expression
entity_or_value_expression ::=

single_valued_object_path_expression |

state_field_path_expression |

simple_entity_or_value_expression
simple_entity_or_value_expression ::=

identification_variable |

input_parameter

literal
exists_expression ::= [NOT] EXISTS (subquery)
all_or_any_expression ::= {ALL | ANY | SOME} (subquery)
comparison_expression ::=

string_expression comparison_operator {string_expression | all_or_any_expression} |

boolean_expression {= | <>} {boolean_expression | all_or_any_expression} |

enum_expression {= | <>} {enum_expression | all_or_any_expression} |

datetime_expression comparison_operator

{datetime_expression | all_or_any_expression} |

entity_expression {= | <>} {entity_expression | all_or_any_expression} |

arithmetic_expression comparison_operator {arithmetic_expression | all_or_any_expression} |

entity_id_or_version_function {= | <>} input_parameter

entity_type_expression {= | <>} entity_type_expression}
comparison_operator ::==| > | >= | < | <= | <
arithmetic_expression ::=

arithmetic_term | arithmetic_expression {+ | -} arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term {* | /} arithmetic_factor
arithmetic_factor ::= [{+ | -}] arithmetic_primary
arithmetic_primary ::=

state_valued_path_expression |

numeric_literal |

(arithmetic_expression) |

input_parameter

functions_returning_numerics

aggregate_expression |

case_expression |

function_invocation |

arithmetic_cast_function |

(subquery)
string_expression ::=

state_valued_path_expression |

string_literal |

input_parameter

functions_returning_strings |

aggregate_expression |

case_expression |

function_invocation |

string_cast_function |

string_expression || string_expression

(subquery)
datetime_expression ::=

state_valued_path_expression |

input_parameter

functions_returning_datetime |

aggregate_expression |

case_expression |

function_invocation |

date_time_timestamp_literal |

(subquery)
boolean_expression ::=

state_valued_path_expression |

boolean_literal |

input_parameter

case_expression |

function_invocation |

(subquery)
enum_expression ::=

state_valued_path_expression

131

enum_literal |
input_parameter
case_expression |

(subquery)
entity_expression ::= single_valued_object_path_expression | simple_entity_expression
simple_entity_expression ::= identification_variable | input_parameter

entity_type_expression ::=
type_discriminator
entity_type_literal |
input_parameter
type_discriminator ::=
TYPE(general_identification_variable |
single_valued_object_path_expression |
input_parameter)
arithmetic_cast_function::=
CAST(string_expression AS {INTEGER | LONG | FLOAT | DOUBLE})
functions_returning_numerics ::=
LENGTH(string_expression) |
LOCATE(string_expression, string_expression[, arithmetic_expression]) |
ABS(arithmetic_expression) |
CEILING(arithmetic_expression) |
EXP(arithmetic_expression) |
FLOOR(arithmetic_expression) |
LN(arithmetic_expression) |
SIGN(arithmetic_expression) |
SQRT(arithmetic_expression) |
MOD(arithmetic_expression, arithmetic_expression) |
POWER(arithmetic_expression, arithmetic_expression) |
ROUND(arithmetic_expression, arithmetic_expression) |
SIZE(collection_valued_path_expression) |
INDEX(identification_variable) |
extract_datetime_field
functions_returning_datetime ::=
CURRENT_DATE
CURRENT_TIME |
CURRENT_TIMESTAMP |
LOCAL DATE |
LOCAL TIME |
LOCAL DATETIME |
extract_datetime_part
string_cast_function::=
CAST(scalar_expression AS STRING)
functions_returning_strings ::=
CONCAT(string_expression, string_expression{, string_expression}*) |
SUBSTRING(string_expression, arithmetic_expression[, arithmetic_expression]) |
TRIM([[trim_specification] [trim_character] FROM] string_expression) |
LOWER(string_expression) |
UPPER(string_expression)
trim_specification ::= LEADING | TRAILING | BOTH
function_invocation ::= FUNCTION(function_name{, function_arg}*)
extract_datetime_field :=
EXTRACT(datetime_field FROM datetime_expression)
datetime_field := identification_variable
extract_datetime_part :=
EXTRACT(datetime_part FROM datetime_expression)
datetime_part := identification_variable
function_arg ::=
literal |
state_valued_path_expression |
input_parameter
scalar_expression
entity_id_or_version_function ::= id_function | version_function
id_function ::=
ID(general_identification_variable |
single_valued_object_path_expression)
version_function ::=
VERSION(general_identification_variable |

132

single_valued_object_path_expression)

case_expression ::=

general_case_expression |

simple_case_expression |

coalesce_expression |

nullif_expression
general_case_expression::= CASE when_clause {when_clause}* ELSE scalar_expression END
when_clause ::= WHEN conditional_expression THEN scalar_expression
simple_case_expression ::=

CASE case_operand simple_when_clause {simple_when_clause}*

ELSE scalar_expression

END
case_operand ::= state_valued_path_expression | type_discriminator
simple_when_clause ::= WHEN scalar_expression THEN scalar_expression
coalesce_expression ::= COALESCE(scalar_expression{, scalar_expression}+)

nullif_expression::= NULLIF(scalar_expression, scalar_expression)

[1] As in SQL, the INTERSECT and INTERSECT ALL operations have higher precedence than UNION, UNION ALL, EXCEPT, and EXCEPT
ALL.

[2] This chapter uses the convention that reserved identifiers appear in upper case in the examples and BNF for the
language.

[3] BIT_LENGTH, CHAR_LENGTH, CHARACTER_LENGTH, POSITION, and UNKNOWN are not currently used: they are reserved for future
use.

[4] A range variable never designates an embeddable class abstract schema type.

[5] Note that use of VALUE is optional, as an identification variable referring to an association of type java.util.Map is of
the abstract schema type of the map value. (See Section 4.4.2.)

[6] Support for right outer joins and full outer joins is under consideration for inclusion in a future version of this
specification.

[7] The implementation is not expected to perform such query operations involving such fields in memory rather than
in the database.

[8] Note that queries that contain subqueries on both sides of a comparison operation will not be portable across all
databases.

[9] Note that use of a collection-valued input parameter might prevent precompilation of the query.
[10] Refer to [2] for a more precise characterization of these rules.
[11] The use of the reserved word OF is optional in this expression.

[12] Subqueries are restricted to the WHERE and HAVING clauses in this release. Support for subqueries in the FROM clause
will be considered in a later release of this specification.

[13] Note that expressions involving aggregate operators must not be used in the WHERE clause.

[14] Note that not all databases support the use of a trim character other than the space character; use of this argument
may result in queries that are not portable.

[15] Note that not all databases support the use of the third argument to LOCATE; use of this argument may result in
queries that are not portable.

[16] Note that not all databases support the use of SQL case expressions. The use of case expressions may result in
queries that are not portable to such databases.

[17] For a general or simple CASE expression, the operands are the scalar expressions in the THEN and ELSE clauses.
[18] Note that the keyword 0BJECT is not required. It is preferred that it be omitted for new queries.
[19] It is legal to specify DISTINCT with MAX or MIN, but it does not affect the result.

133

Chapter 5. Metamodel API

This specification provides a set of interfaces for dynamically accessing a metamodel representing the managed classes
of a persistence unit. Instances of metamodel types may be obtained either:

* via programmatic lookup using an instance of the interface Metamodel (found in Section D.1) obtained from the
EntityManagerFactory or EntityManager by calling getMetamodel(), or

¢ in a typesafe way, using static metamodel classes.

A static metamodel class is a class with static members providing direct typesafe access to metamodel objects
representing the persistent members of a given managed class.

5.1. Static Metamodel Classes

A set of static metamodel classes corresponding to the managed classes of a persistence unit can be generated using an
annotation processor or may be created by the application developer.

In the typical case, an annotation processor is used to generate static metamodel classes corresponding to the entities,
mapped superclasses, and embeddable classes in the persistence unit. A static metamodel class models the persistent
state and relationships of the corresponding managed class. For portability, an annotation processor should generate a
canonical metamodel as specified in the next section.

5.1.1. Canonical Metamodel

This specification defines as follows a canonical metamodel and the structure of canonical metamodel classes.
For every managed class in the persistence unit, a corresponding metamodel class is produced as follows:

« For each managed class X in package p, a metamodel class X_ in package p is created.”

¢ The name of the metamodel class is derived from the name of the managed class by appending “_” to the name of
the managed class.

« The metamodel class X_ must be annotated with the StaticMetamodel annotation found in Section D.2.”!

 If the managed class X extends another class S, where S is the most derived managed class (i.e., entity or mapped
superclass) extended by X, then the metamodel class X_ must extend the metamodel class S_ created for S.

* The metamodel class must contain a field declaration as follows:

public static volatile jakarta.persistence.metamodel.T<X> class_;

where T is EntityType, EmbeddableType, or MappedSuperclassType depending on whether X is an entity, embeddable, or
mapped superclass.

» For every persistent attribute y declared by class X, the metamodel class must contain a field declaration as follows:

public static final String Y = "y";

where the field name Y is obtained by transforming each lowercase character in the attribute name y to uppercase,
inserting an underscore if the character following the transformed character is uppercase, and then replacing each
character which is not a legal Java identifier character with an underscore.

« For every persistent non-collection-valued attribute y declared by class X, where the type of y is Y, the metamodel
class must contain a declaration as follows:

public static volatile SingularAttribute<X, Y> vy;

134

« For every persistent collection-valued attribute z declared by class X, where the element type of z is Z, the metamodel
class must contain a declaration as follows:

o if the collection type of z is java.util.Collection, then

public static volatile CollectionAttribute<X, Z> z;

o if the collection type of z is java.util.Set, then

public static volatile SetAttribute<X, Z> z;

o if the collection type of z is java.util.List, then

public static volatile ListAttribute<X, Z> z;

o if the collection type of z is java.util.Map, then

public static volatile MapAttribute<X, K, 7> z;

where K is the type of the key of the map in class X

» For every named query, named entity graph, or SQL result set mapping with name "n" declared by annotations of
the class X, the metamodel class must contain a declaration as follows:

public static final String T_N = "n";

where the prefix T is the string QUERY, GRAPH, or MAPPING, as appropriate, depending on the annotation type, and the
suffix N is obtained by transforming each lowercase character in the name n to uppercase, inserting an underscore if
the character following the transformed character is uppercase, and then replacing each character which is not a
legal Java identifier character with an underscore.

 For every named query with name "n" and query result class R declared by annotations of the class X, the metamodel
class must contain a declaration as follows:

public static volatile TypedQueryReference<R> _n_;

where n is the name "n" with every character which is not a legal Java identifier character replaced with an
underscore.

» For every named entity graph with name "n" declared by annotations of the class X, the metamodel class must
contain a declaration as follows:

public static volatile EntityGraph<X> _n;

where n is the name "n" with every character which is not a legal Java identifier character replaced with an
underscore.

Import statements must be included for the needed jakarta.persistence and jakarta.persistence.metamodel types as
appropriate and all classes X, Y, Z, R, and K.

o Implementations of this specification are not required to resolve naming collisions resulting from the
rules above when generating canonical metamodel classes.

o Implementations of this specification are not required to support the use of non-canonical metamodel

135

classes. Applications that use non-canonical metamodel classes will not be portable.

5.1.1.1. Example Canonical Metamodel
Assume the Order entity below.

package com.example;

import java.util.Set;

import java.math.BigDecimal;

import jakarta.persistence.Entity;
import jakarta.persistence.ld;

import jakarta.persistence.ManyToOne;
import jakarta.persistence.OneToMany;

@Entity

public class Order {
@Id
Integer orderld;

@ManyToOne
Customer customer;

@0neToMany
Set<Item> lineltems;

Address shippingAddress;
BigDecimal totalCost;

/] ...

The corresponding canonical metamodel class, Order_, is as follows:

package com.example;

import java.math.BigDecimal;

import jakarta.persistence.metamodel.EntityType;

import jakarta.persistence.metamodel.SingularAttribute;
import jakarta.persistence.metamodel.SetAttribute;
import jakarta.persistence.metamodel.StaticMetamodel;

@StaticMetamodel(Order.class)
public class Order_ {
public static volatile EntityType<Order> class_;

public static volatile SingularAttribute<Order, Integer> orderlId;

public static volatile SingularAttribute<Order, Customer> customer;
public static volatile SetAttribute<Order, Item> lineltems;

public static volatile SingularAttribute<Order, Address> shippingAddress;
public static volatile SingularAttribute<Order, BigDecimal> totalCost;

public static final String LINE_ITEMS = "lineltems";

public static final String ORDER_ID = "orderId";

public static final String SHIPPING_ADDRESS = "shippingAddress";
public static final String TOTAL_COST = "totalCost";

public static final String CUSTOMER = "customer";

136

5.1.2. Bootstrapping the Static Metamodel

When the entity manager factory for a persistence unit is created, it is the responsibility of the persistence provider to
initialize the state of the static metamodel classes representing managed classes belonging to the persistence unit. Any
generated metamodel classes must be accessible on the classpath.

Persistence providers must support the use of canonical metamodel classes. Persistence providers may, but are not
required to, support the use of non-canonical metamodel classes.

5.2. Runtime Access to Metamodel

The interfaces defined in jakarta.persistence.metamodel provide for dynamic access to a metamodel of the persistent
state and relationships of the managed classes of a persistence unit.

An instance of Metamodel may be obtained by calling the getMetamodel() method of EntityManagerFactory or EntityManager.

The complete metamodel API may be found in Appendix D.

[1] We expect that the option of different packages will be provided in a future release of this specification.

[2] If the class was generated, it should also be annotated with either javax.annotation.processing.Generated or
jakarta.annotation.Generated. The use of any other annotations on static metamodel classes is undefined.

137

Chapter 6. Criteria API

The Jakarta Persistence Criteria API is used to define queries through the construction of object-based query definition
objects, rather than use of the string-based approach of the Jakarta Persistence query language described in Chapter 4.

This chapter provides the full definition of the Criteria APL

6.1. Overview

The Jakarta Persistence Criteria API, like the Jakarta Persistence query language is based on the abstract persistence
schema of entities, their embedded objects, and their relationships as its data model. This abstract persistence schema
is materialized in the form of metamodel objects over which the Criteria API operates. The semantics of criteria queries
are designed to reflect those of Jakarta Persistence query language queries.

The complete criteria query API may be found in Appendix C.

The syntax of the Criteria API is designed to allow the construction of an object-based query “graph”, whose nodes
correspond to the semantic query elements.

Java language variables can be used to reference individual nodes in a criteria query object as it is constructed and/or
modified. Such variables, when used to refer to the entities and embeddable types that constitute the query domain,
play a role analogous to that of the identification variables of the Jakarta Persistence query language.

These concepts are further described in the sections that follow. Sections Section 6.2 through Section 6.6 describe the
construction and modification of criteria query objects. Additional requirements on the persistence provider are
described in Section 6.7.

The metamodel on which criteria queries are based was already presented in Chapter 5. The static metamodel classes
which are used to construct strongly-typed criteria queries are described in Section 5.1.

6.2. Criteria Query API Usage

The jakarta.persistence.criteria API interfaces are designed both to allow criteria queries to be constructed in a
strongly-typed manner, using metamodel objects to provide type safety, and to allow for string-based use as an
alternative:

Metamodel objects are used to specify navigation through joins and through path expressions™. Typesafe navigation is
achieved by specification of the source and target types of the navigation.

Strings may be used as an alternative to metamodel objects, whereby joins and navigation are specified by use of
strings that correspond to attribute names.

Using either the approach based on metamodel objects or the string-based approach, queries can be constructed both
statically and dynamically. Both approaches are equivalent in terms of the range of queries that can be expressed and
operational semantics.

Section 6.3 provides a description of the use of the criteria API interfaces. This section is illustrated on the basis of the
construction of strongly-typed queries using static metamodel classes. Section 6.4 describes how the
jakarta.persistence.metamodel API can be used to construct strongly-typed queries in the absence of such classes. String-
based use of the criteria API is described in Section 6.5.

138

6.3. Constructing Criteria Queries

A criteria query is constructed through the creation and modification of an instance of the CriteriaQuery interface
found in Section C.3.

The CriteriaBuilder interface found in Section C.1 is used to construct CriteriaQuery, Criterialpdate, and CriteriaDelete
objects. The CriteriaBuilder implementation is accessed through the getCriteriaBuilder method of the EntityManager or
EntityManagerFactory interface.

For example:

EntityManagerFactory emf;

CriteriaBuilder cb = emf.getCriteriaBuilder();

6.3.1. CriteriaQuery Creation

A CriteriaQuery object is created by means of one of the createQuery methods or the createTupleQuery method of the
CriteriaBuilder interface. A CriteriaQuery object is typed according to its expected result type when the CriteriaQuery
object is created. A TypedQuery instance created from the CriteriaQuery object by means of the EntityManager createQuery
method will result in instances of this type when the resulting query is executed.

The following methods are provided for the creation of CriteriaQuery objects:

<T> CriteriaQuery<T> createQuery(Class<T> resultClass);
CriteriaQuery<Tuple> createTupleQuery();

CriteriaQuery<Object> createQuery();

Methods for the creation of update and delete queries are described in Section 6.3.15.

The methods <T> CriteriaQuery<T> createQuery(Class<T> resultClass) and createTupleQuery provide for typing of criteria
query results and for typesafe query execution using the TypedQuery API.

The effect of the createTupleQuery method is semantically equivalent to invoking the createQuery method with the
Tuple.class argument. The Tuple interface supports the extraction of multiple selection items in a strongly typed
manner. See Section B.9 and Section B.10.

The CriteriaQuery<Object> createQuery() method supports both the case where the select or multiselect method specifies
only a single selection item and where the multiselect method specifies multiple selection items. If only a single item is
specified, an instance of type Object will be returned for each result of the query execution. If multiple selection items
are specified, an instance of type Object[] will be instantiated and returned for each result of the execution.

See Section 6.3.11 for further discussion of the specification of selection items.

6.3.2. Query Roots

A CriteriaQuery object defines a query over one or more entity, embeddable, or basic abstract schema types. The root
objects of the query are entities, from which the other types are reached by navigation. A query root plays a role
analogous to that of a range variable in the Jakarta Persistence query language and forms the basis for defining the
domain of the query.

A query root is created and added to the query by use of the from method of the AbstractQuery interface (from which
both the CriteriaQuery and Subquery interfaces inherit). The argument to the from method is the entity class or EntityType

139

instance for the entity. The result of the from method is a Root object. The Root interface extends the From interface, which
represents objects that may occur in the from clause of a query.

A CriteriaQuery object may have more than one root. The addition of a query root has the semantic effect of creating a
cartesian product between the entity type referenced by the added root and those of the other roots.

The following query illustrates the definition of a query root. When executed, this query causes all instances of the
Customer entity to be returned.

CriteriaBuilder cb = ...
CriteriaQuery<Customer> q
Root<Customer> customer =
q.select(customer);

= cb.createQuery(Customer.class);
q.from(Customer.class);

6.3.3. Joins

The join methods of the From interface extend the query domain by creating a join with a related class that can be
navigated to or that is an element of the given class of the query domain.

The target of the join is specified by the corresponding SingularAttribute or collection-valued attribute (

CollectionAttribute, SetAttribute, ListAttribute, or MapAttribute) of the corresponding metamodel class.” ™

The join methods may be applied to instances of the Root and Join types.

The result of a join method is a Join object (instance of the Join, CollectionJoin, SetJoin, ListJoin, or MapJoin types) that
captures the source and target types of the join.

For example, given the Order entity and corresponding Order_ metamodel class shown in Section 5.1.1.1, a join to the
lineltems of the order would be expressed as follows:

CriteriaQuery<Order> q = cb.createQuery(Order.class);
Root<Order> order = q.from(Order.class);

Join<Order, Item> item = order.join(Order_.lineItems);
g.select(order);

The argument to the join method, Order.1lineltenms, is of type jakarta.persistence.metamodel.SetAttribute<Order, Item>.

The join methods have the same semantics as the corresponding Jakarta Persistence query language operations, as
described in Section 4.4.7.

Example:

CriteriaBuilder cb = ...

CriteriaQuery<String> q = cb.createQuery(String.class);

Root<Customer> customer = q.from(Customer.class);

Join<Customer, Order> order = customer.join(Customer_.orders);

Join<Order, Item> item = order.join(Order_.lineltems);

g.select(customer.get(Customer_.name))
.where(cb.equal(item.get(Item_.product).get(Product_.productType), "printer"));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT c.name
FROM Customer c¢ JOIN c.orders o JOIN o.lineltems i
WHERE 1i.product.productType = 'printer’

Joins can be chained, thus allowing this query to be written more concisely:

140

CriteriaQuery<String> q = cb.createQuery(String.class);

Root<Customer> customer = q.from(Customer.class);

Join<Order, Item> item = customer.join(Customer_.orders).join(Order_.lineItems);

g.select(customer.get(Customer_.name))
.where(cb.equal(item.get(Item_.product).get(Product_.productType), "printer"));

By default, the join method defines an inner join. Outer joins are defined by explicitly specifying a JoinType argument.

The following query uses a left outer join:

CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> customer = q.from(Customer.class);
Join<Customer,Order> order = customer.join(Customer_.orders, JoinType.LEFT);
q.where(cb.equal(customer.get(Customer_.status), 1))
.select(customer);

This query is equivalent to the following Jakarta Persistence query language query:

SELECT ¢ FROM Customer c¢ LEFT JOIN c.orders o WHERE c.status = 1

On-conditions can be specified for joins. The following query uses an on-condition with a left outer join:

CriteriaQuery<Tuple> q = cb.createTupleQuery();

Root<Supplier> s = q.from(Supplier.class);

Join<Supplier, Product> p = s.join(Supplier_.products, JoinType.LEFT);
p.on(cb.equal(p.get(Product_.status), "inStock"));
q.groupBy(s.get(Supplier_.name));

g.multiselect(s.get(Supplier_.name), cb.count(p));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT s.name, COUNT(p)
FROM Suppliers s LEFT JOIN s.products p ON p.status = "inStock'
GROUP BY s.name

6.3.4. Fetch Joins

Fetch joins are specified by means of the fetch method. The fetch method specifies that the referenced association or
attribute is to be fetched as a side effect of the execution of the query. The fetch method can be applied to a Root or Join
instance.

An association or attribute referenced by the fetch method must be referenced from an entity or embeddable that is
returned as the result of the query. A fetch join has the same join semantics as the corresponding inner or outer join,
except that the related objects are not top-level objects in the query result and cannot be referenced elsewhere by the
query. See Section 4.4.5.3.

The fetch method must not be used in a subquery.

Multiple levels of fetch joins are not required to be supported by an implementation of this specification. Applications
that use multi-level fetch joins will not be portable.

Example:

CriteriaQuery<Department> q = cb.createQuery(Department.class);
Root<Department> d = q.from(Department.class);
d.fetch(Department.employees, JoinType.LEFT);
g.where(cb.equal(d.get(Department_.deptno), 1)).select(d);

141

This query is equivalent to the following Jakarta Persistence query language query:

SELECT d
FROM Department d LEFT JOIN FETCH d.employees
WHERE d.deptno = 1

6.3.5. Path Navigation

A Path instance can be a Root instance, a Join instance, a Path instance that has been derived from another Path instance
by means of the get navigation method, or a Path instance derived from a map-valued association or element collection
by use of the key or value method.

When a criteria query is executed, path navigation—like path navigation using the Jakarta Persistence query
language—is obtained using “inner join” semantics. That is, if the value of a non-terminal Path instance is null, the path
is considered to have no value, and does not participate in the determination of the query result. See Section 4.4.4.

The get method is used for path navigation. The argument to the get method is specified by the corresponding
SingularAttribute or collection-valued attribute (CollectionAttribute, SetAttribute, ListAttribute, or MapAttribute) of the
corresponding metamodel class™.

Example 1:

In the following example, ContactInfo is an embeddable class consisting of an address and set of phones. Phone is an
entity.

CriteriaQuery<Vendor> q = cb.createQuery(Vendor.class);
Root<Employee> emp = q.from(Employee.class);
Join<ContactInfo, Phone> phone =
emp.join(Employee_.contactInfo).join(ContactInfo_.phones);
q.where(cb.equal(emp.get(Employee_.contactInfo)
.get(ContactInfo_.address)
.get(Address_.zipcode), "95054"))
.select(phone.get(Phone_.vendor));

The following Jakarta Persistence query language query is equivalent:

SELECT p.vendor
FROM Employee e JOIN e.contactInfo.phones p
WHERE e.contactInfo.address.zipcode = '95054'

Example 2:

In this example, the photos attribute corresponds to a map from photo label to filename. The map key is a string, the
value an object. The result of this query will be returned as a Tuple object whose elements are of types String and Object.
The multiselect method, described further in Section 6.3.11, is used to specify that the query returns multiple selection
items.

CriteriaQuery<Tuple> q = cb.createTupleQuery();

Root<Item> item = q.from(Item.class);

MapJloin<Item, String, Object> photo = item.join(Item_.photos);

g.multiselect(item.get(Item_.name), photo)
.where(cb.like(photo.key(), "%egret%"));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT i.name, p
FROM Item i JOIN i.photos p

142

WHERE KEY(p) LIKE '%egret%'

6.3.6. Restricting the Query Result

The result of a query can be restricted by specifying one or more predicate conditions. Restriction predicates are
applied to the CriteriaQuery object by means of the where method. Invocation of the where method results in the
modification of the CriteriaQuery object with the specified restriction(s).

The argument to the where method can be either an Expression<Boolean> instance or zero or more Predicate instances. A
predicate can be either simple or compound.

A simple predicate is created by invoking one of the conditional methods of the CriteriaBuilder interface, or by the
isNull, isNotNull, and in methods of the Expression interface. The semantics of the conditional methods—e.g., equal,
notEqual, gt, ge, 1t, le, between, and like — mirror those of the corresponding Jakarta Persistence query language
operators as described in Chapter 4.

Compound predicates are constructed by means of the and, or, and not methods of the CriteriaBuilder interface.

The restrictions upon the types to which conditional operations are permitted to be applied are the same as the
respective operators of the Jakarta Persistence query language as described in subsections Section 4.6.3 through Section
4.7. The same null value semantics as described in Section 4.6.13 and the subsections of Section 4.6 apply. The equality
and comparison semantics described in Section 4.6.14 likewise apply.

Example 1:

CriteriaQuery<TransactionHistory> q = cb.createQuery(TransactionHistory.class);
Root<CreditCard> cc = q.from(CreditCard.class);
ListJoin<CreditCard,TransactionHistory> t = cc.join(CreditCard_.transactionHistory);
q.select(t)
.where(cb.equal(cc.get(CreditCard_.customer)
.get(Customer_.accountNum), 321987),
cb.between (t.index(), 0, 9));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT t
FROM CreditCard c¢ JOIN c.transactionHistory t
WHERE c.customer.accountNum = 321987 AND INDEX(t) BETWEEN @ AND 9

Example 2:

CriteriaQuery<Order> q = cb.createQuery(Order.class);

Root<Order> order = q.from(Order.class);

q.where(cb.isEmpty(order.get(Order_.lineItems)))
.select(order);

This query is equivalent to the following Jakarta Persistence query language query:

SELECT o
FROM Order o
WHERE o.linelItems IS EMPTY

6.3.7. Downcasting

Downcasting by means of the treat method is supported in joins and in the construction of where conditions.
Example 1:

143

CriteriaQuery<String> q = cb.createQuery(String.class);

Root<Order> order = q.from(Order.class);

Join<Order,Book> book = cb.treat(order.join(Order_.product), Book.class);
q.select(book.get(Book_.isbn));

This query is equivalent to the following Jakarta Persistence query language query.

SELECT b.ISBN
FROM Order o JOIN TREAT(o.product AS Book) b

Example 2:

CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> customer = q.from(Customer.class);
Join<Customer, Order> order = customer.join(Customer_.orders);
q.where(
cb.equal(cb.treat(order.get(Order_.product), Book.class).get(Book_.name), "Iliad"));
g.select(customer);

This query is equivalent to the following Jakarta Persistence query language query:

SELECT ¢
FROM Customer c¢ JOIN c.orders o
WHERE TREAT(o.product AS Book).name = 'Iliad’

Example 3:

CriteriaQuery<Employee> q = cb.createQuery(Employee.class);
Root<Employee> e = q.from(Employee.class);
q.where(
cb.or(cb.gt(cb.treat(e, Exempt.class).get(Exempt_.vacationDays), 10),
cb.gt(cb.treat(e, Contractor.class).get(Contractor_.hours), 100)));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT e

FROM Employee e

WHERE TREAT(e AS Exempt).vacationDays > 10
OR TREAT(e AS Contractor).hours > 100

6.3.8. Expressions

An Expression or one of its subtypes can be used in the construction of the query’s select list or in the construction of
where or having method conditions.

Paths and boolean predicates are expressions.

Other expressions are created by means of the methods of the CriteriaBuilder interface. The CriteriaBuilder interface
provides methods corresponding to the built-in arthmetic, string, datetime, and case operators and functions of the
Jakarta Persistence query language.

Example 1:

CriteriaQuery<Tuple> q = cb.createTupleQuery();

Root<Customer> cust = q.from(Customer.class);

Join<Customer, Order> order = cust.join(Customer_.orders);

Join<Customer, Address> addr = cust.join(Customer_.address);

q.where(cb.equal(addr.get(Address_.state), "CA"),
cb.equal(addr.get(Address_.county), "Santa Clara"));

144

g.multiselect(order.get(Order_.quantity),
cb.prod(order.get(Order_.totalCost), 1.08),
addr.get(Address_.zipcode));

The following Jakarta Persistence query language query is equivalent:

SELECT o.quantity, o.totalCost*1.08, a.zipcode
FROM Customer c JOIN c.orders o JOIN c.address a
WHERE a.state = "CA' AND a.county = 'Santa (lara’

Example 2:

CriteriaQuery<Employee> q = cb.createQuery(Employee.class);
Root<Employee> emp = q.from(Employee.class);
q.select(emp)

.where(cb.notEqual(emp.type(), Exempt.class));

The type method can only be applied to a path expression. Its result denotes the type navigated to by the path.

The following Jakarta Persistence query language query is equivalent:

SELECT e
FROM Employee e
WHERE TYPE(e) <> Exempt

Example 3:

CriteriaQuery<String> q = cb.createQuery(String.class);
Root<Course> ¢ = q.from(Course.class);
ListJoin<Course, Student> w = c.join(Course_.studentWaitlist);
g.where(cb.equal(c.get(Course_.name), "Calculus"),
cb.equal(w.index(), 0))
.select(w.get(Student_.name));

The index method can be applied to a ListJoin object that corresponds to a list for which an order column has been
specified. Its result denotes the position of the item in the list.

The following Jakarta Persistence query language query is equivalent:

SELECT w.name
FROM Course ¢ JOIN c.studentWaitlist w
WHERE c.name = 'Calculus' AND INDEX(w) = 0

Example 4:

CriteriaQuery<BigDecimal> q = cb.createQuery(BigDecimal.class);
Root<Order> order = q.from(Order.class);

Join<Order, Item> item = order.join(Order_.lineltems);
Join<Order, Customer> cust = order.join(Order_.customer);

q.where(
cb.equal(cust.get(Customer_.lastName), "Smith"),
cb.equal(cust.get(Customer_.firstName), "John"));
g.select(cb.sum(item.get(Item_.price)));

The aggregation methods avg, max, min, sum, count can only be used in the construction of the select list or in having
method conditions.

145

The following Jakarta Persistence query language query is equivalent:

SELECT SUM(i.price)
FROM Order o JOIN o.lineItems i JOIN o.customer c
WHERE c.lastName = 'Smith' AND c.firstName = 'John'

Example 5:

CriteriaQuery<Integer> q = cb.createQuery(Integer.class);
Root<Department> d = q.from(Department.class);

.where(cb.equal(d.get(Department_.name), "Sales"))
.select(cb.size(d.get(Department_.employees)));

The size method can be applied to a path expression that corresponds to an association or element collection. Its result
denotes the number of elements in the association or element collection.

The following Jakarta Persistence query language query is equivalent:

SELECT SIZE(d.employees)
FROM Department d
WHERE d.name = 'Sales’

Example 6:
Both simple and general case expressions are supported. The query below illustrates use of a general case expression.

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<Employee> e = q.from(Employee.class);
q.where(
cb.equal(e.get(Employee_.department).get(Department_.name), "Engineering"));
g.multiselect(
e.get(Employee_.name),
cb.selectCase()
.when(
cb.equal(e.get(Employee_.rating), 1),
cb.prod(e.get(Employee_.salary), 1.1))
.when(
cb.equal(e.get(Employee_.rating), 2),
cb.prod(e.get(Employee_.salary), 1.2))
.otherwise(cb.prod(e.get(Employee_.salary), 1.01)));

The following Jakarta Persistence query language query is equivalent:

SELECT e.name,
CASE
WHEN e.rating THEN e.salary * 1.1
WHEN e.rating = 2 THEN e.salary * 1.2
ELSE e.salary * 1.01
END
FROM EMPLOYEE e
WHERE e.department.name = 'Engineering'

1
—

6.3.8.1. Result Types of Expressions

The getJavaType method, as defined in the TupleElement interface, returns the runtime type of the object on which it is
invoked.

In the case of the In, Case, SimpleCase, and Coalesce builder interfaces, the runtime results of the getJavaType method may
differ from the Expression type and may vary as the expression is incrementally constructed. For non-numerical

146

operands, the implementation must return the most specific common superclass of the types of the operands used to
form the result.

In the case of the two-argument sum, prod, diff, quot, coalesce, and nullif methods, and the In, Case, SimpleCase, and
Coalesce builder methods, the runtime result types will differ from the Expression type when the latter is Number. The
following rules must be observed by the implementation when materializing the results of numeric expressions
involving these methods. These rules correspond to those specified for the Jakarta Persistence query language as
defined in Section 4.7.13.

o If there is an operand of type Double, the result of the operation is of type Double;
» otherwise, if there is an operand of type Float, the result of the operation is of type Float;
 otherwise, if there is an operand of type BigDecimal, the result of the operation is of type BigDecimal;

» otherwise, if there is an operand of type BigInteger, the result of the operation is of type BigInteger, unless the
method is quot, in which case the numeric result type is not further defined;

» otherwise, if there is an operand of type Long, the result of the operation is of type Long, unless the method is quot,
in which case the numeric result type is not further defined;

» otherwise, if there is an operand of integral type, the result of the operation is of type Integer, unless the method is
quot, in which case the numeric result type is not further defined.

e Users should note that the semantics of the SQL division operation are not standard across databases.
In particular, when both operands are of integral types, the result of the division operation will be an
integral type in some databases, and an non-integral type in others. Portable applications should not
assume a particular result type.

6.3.9. Literals

An Expression literal instance is obtained by passing a value to the literal method of the CriteriaBuilder interface. An
Expression instance representing a null is created by the nullLiteral method of the CriteriaBuilder interface.

Example:

CriteriaQuery<String> q = cb.createQuery(String.class);
Root<Employee> emp = q.from(Employee.class);
Join<Employee, FrequentFlierPlan> fp = emp.join(Employee_.frequentFlierPlan);

q.select(
cb.<String>selectCase()

.when(
cb.gt(fp.get(FrequentFlierPlan_.annualMiles), 50000),
cb.literal("Platinum"))

.when(
cb.gt(fp.get(FrequentFlierPlan_.annualMiles), 25000),
cb.literal("Silver"))

.otherwise(cb.nullliteral(String.class)));

The following Jakarta Persistence query language query is equivalent:

SELECT
CASE
WHEN fp.annualMiles > 50000 THEN 'Platinum'
WHEN fp.annualMiles > 25000 THEN 'Gold'
ELSE NULL
END

147

6.3.10. Parameter Expressions

A ParameterExpression instance is an expression that corresponds to a parameter whose value will be supplied before the
query is executed. Parameter expressions can only be used in the construction of conditional predicates.

Example:

CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> ¢ = q.from(Customer.class);
ParameterExpression<Integer> param = cb.parameter(Integer.class);

q.select(c)
.where(cb.equal(c.get(Customer_.status), param));

If a name is supplied when the ParameterExpression instance is created, the parameter may also be treated as a named
parameter when the query is executed:

CriteriaQuery<Customer> q = ch.createQuery(Customer.class);

Root<Customer> c¢ = q.from(Customer.class);
ParameterExpression<Integer> param = cb.parameter(Integer.class, "stat");
g.select(c).where(cb.equal(c.get(Customer_.status), param));

This is equivalent to the following query in the Jakarta Persistence query language:

SELECT ¢ FROM Customer c¢ WHERE c.status = :stat

6.3.11. Specifying the Select List

The select list of a query is specified by use of the select or multiselect methods of the CriteriaQuery interface. The
arguments to the select and multiselect methods are Selection instances.

0 Portable applications should use the select or multiselect method to specify the query’s selection list.
Applications that do not use one of these methods will not be portable.

The select method takes a single Selection argument, which can be either an Expression instance or a CompoundSelection
instance. The type of the Selection item must be assignable to the defined CriteriaQuery result type, as described in
Section 6.3.1.

The construct, tuple and array methods of the CriteriaBuilder interface are used to aggregate multiple selection items
into a CompoundSelection instance.

The multiselect method also supports the specification and aggregation of multiple selection items. When the
multiselect method is used, the aggregation of the selection items is determined by the result type of the CriteriaQuery
object as described in Section 6.3.1.

A Selection instance passed to the construct, tuple, array, or multiselect methods can be one of the following:

e An Expression instance.

* A Selection instance obtained as the result of the invocation of the CriteriaBuilder construct method.

The distinct method of the CriteriaQuery interface is used to specify that duplicate values must be eliminated from the
query result. If the distinct method is not used or distinct(false) is invoked on the criteria query object, duplicate
values are not eliminated. When distinct(true) is used, and the select items include embeddable objects or map entry
results, the elimination of duplicates is undefined.

148

The semantics of the construct method used in the selection list is as described in Section 4.9.2. The semantics of
embeddables returned by the selection list areas described in Section 4.9.4.

Example 1:

In the following example, videoInventory is a Map from the entity Movie to the number of copies in stock.

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<VideoStore> v = q.from(VideoStore.class);
MapJoin<VideoStore, Movie, Integer> inv = v.join(VideoStore_.videoInventory);

g.multiselect(
v.get(VideoStore_.location).get(Address_.street),
inv.key().get(Movie_.title),
inv);
g.where(cb.equal(v.get(VideoStore_.location).get(Address_.zipcode), "94301"),
cb.gt(inv, 0));

This query is equivalent to the following, in which the tuple method is used:

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<VideoStore> v = q.from(VideoStore.class);
MapJloin<VideoStore, Movie, Integer> inv = v.join(VideoStore_.videoInventory);

g.select(cb.tuple(
v.get(VideoStore_.location).get(Address_.street),
inv.key().get(Movie_.title),
inv));
q.where(cb.equal(v.get(VideoStore_.location).get(Address_.zipcode), "94301"),
cb.gt(inv, 0));

Both are equivalent to the following Jakarta Persistence query language query:

SELECT v.location.street, KEY(i).title, VALUE(i)
FROM VideoStore v JOIN v.videoInventory i
WHERE v.location.zipcode = '94301" AND VALUE(i) > 0

Example 2:

The following two queries are equivalent to the Jakarta Persistence query language query above. Because the result
type is not specified by the createQuery method, an Object[] is returned as a result of the query execution:

CriteriaQuery<Object> q = cb.createQuery();
Root<VideoStore> v = q.from(VideoStore.class);
MapJoin<VideoStore, Movie, Integer> inv = v.join(VideoStore_.videoInventory);

g.multiselect(
v.get(VideoStore_.location).get(Address_.street),
inv.key().get(Movie_.title),
inv);

q.where(cb.equal(v.get(VideoStore_.location).get(Address_.zipcode), "94301"),
cb.gt(inv, 0));

Equivalently:

CriteriaQuery<Object> q = cb.createQuery();
Root<VideoStore> v = q.from(VideoStore.class);
MapJloin<VideoStore, Movie, Integer> inv = v.join(VideoStore_.videoInventory);

g.select(cb.array(
v.get(VideoStore_.location).get(Address_.street),

149

inv.key().get(Movie_.title),

inv));
q.where(cb.equal(v.get(VideoStore_.location).get(Address_.zipcode), "94301"),

cb.gt(inv, 0));

Example 3:

The following example illustrates the specification of a constructor.

CriteriaQuery<CustomerDetails> q = cb.createQuery(CustomerDetails.class);
Root<Customer> ¢ = q.from(Customer.class);
Join<Customer, Order> o = c.join(Customer_.orders);

q.where(cb.gt(o.get(Order_.quantity), 100));

g.select(cb.construct(
CustomerDetails.class,
c.get(Customer_.1id),
c.get(Customer_.status),
o.get(Order_.quantity)));

The following Jakarta Persistence query language query is equivalent:

SELECT NEW com.acme.example.CustomerDetails(c.id, c.status, o.quantity)
FROM Customer ¢ JOIN c.orders o
WHERE o.quantity > 100

6.3.11.1. Assigning Aliases to Selection Items

The alias method of the Selection interface can be used to assign an alias to a selection item. The alias may then later be
used to extract the corresponding item from the query result when the query is executed. The alias method assigns the
given alias to the Selection item. Once assigned, the alias cannot be changed.

Example:

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<Customer> ¢ = q.from(Customer.class);
Join<Customer, Order> o = c.join(Customer_.orders);
Join<Customer, Address> a = c.join(Customer_.address);

q.where(cb.equal(c.get(Customer_.id), 97510));

g.multiselect(
0.get(Order_.quantity).alias("quantity"),
cb.prod(o.get(Order_.totalCost), 1.08).alias("taxedCost"),
a.get(Address_.zipcode).alias("zipcode"));

TypedQuery<Tuple> typedQuery = em.createQuery(q);

Tuple result = typedQuery.getSingleResult();
Double cost = (Double)result.get("taxedCost");

6.3.12. Subqueries

Both correlated and non-correlated subqueries can be used in restriction predicates. A subquery is constructed through
the creation and modification of a Subquery object.

A Subquery instance can be passed as an argument to the all, any, or some methods of the CriteriaBuilder interface for use
in conditional expressions.

A Subquery instance can be passed to the CriteriaBuilder exists method to create a conditional predicate.
Example 1: Non-correlated subquery

150

The query below contains a non-correlated subquery. A non-correlated subquery does not reference objects of the

query of which it is a subquery. In particular, Root, Join, and Path instances are not shared between the subquery and

the criteria query instance of which it is a subquery.

// create criteria query instance, with root Customer
CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> goodCustomer = q.from(Customer.class);

// create subquery instance, with root Customer

// the Subquery object is typed according to its return type
Subquery<Double> sq = q.subquery(Double.class);
Root<Customer> customer = sq.from(Customer.class);

// the result of the first query depends on the subquery
q.where(cb.1t(
goodCustomer.get(Customer_.balanceOwed),
sq.select(cb.avg(customer.get(Customer_.balanceOwed)))));
q.select(goodCustomer);

This query corresponds to the following Jakarta Persistence query language query.

SELECT goodCustomer
FROM Customer goodCustomer
WHERE goodCustomer.balanceOwed < (SELECT AVG(c.balanceOwed) FROM Customer c)

Example 2: Correlated subquery

// create CriteriaQuery instance, with root Employee
CriteriaQuery<Employee> q = cb.createQuery(Employee.class);
Root<Employee> emp = q.from(Employee.class);

// create Subquery instance, with root Employee
Subquery<Employee> sq = q.subquery(Employee.class);
Root<Employee> spouseEmp = sq.from(Employee.class);

// the subquery references the root of the containing query
sq.where(cb.equal(spouseEmp, emp.get(Employee_.spouse)))
.select(spouseEmp);

// an exists condition is applied to the subquery result:
g.where(cb.exists(sq));
g.select(emp).distinct(true);

The above query corresponds to the following Jakarta Persistence query language query.

SELECT DISTINCT emp

FROM Employee emp

WHERE EXISTS (
SELECT spouseEmp
FROM Employee spouseEmp
WHERE spouseEmp = emp.spouse)

Example 3: Subquery qualified by all()

// create CriteriaQuery instance, with root Employee
CriteriaQuery<Employee> q = cb.createQuery(Employee.class);
Root<Employee> emp = q.from(Employee.class);

// create Subquery instance, with root Manager
Subquery<BigDecimal> sq = q.subquery(BigDecimal.class);
Root<Manager> manager = sq.from(Manager.class);

151

sq.select(manager.get(Manager_.salary));
sq.where(cb.equal(
manager .get(Manager_.department),
emp.get(Employee_.department)));

// an all expression is applied to the subquery result
q.select(emp)
.where(cb.gt(emp.get(Employee_.salary), cb.all(sq)));

This query corresponds to the following Jakarta Persistence query language query:

SELECT emp
FROM Employee emp
WHERE emp.salary > ALL (
SELECT m.salary
FROM Manager m
WHERE m.department = emp.department)

Example 4: A Special case

In order to express some correlated subqueries involving unidirectional relationships, it may be useful to correlate the
domain of the subquery with the domain of the containing query. This is performed by using the correlate method of
the Subquery interface.

For example:

CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> customer = q.from(Customer.class);

Subquery<Long> sq = q.subquery(Long.class);

Root<Customer> customerSub = sq.correlate(customer);
Join<Customer,Order> order = customerSub.join(Customer_.orders);

g.where(cb.gt(sq.select(cb.count(order)), 10))
.select(customer);

This query corresponds to the following Jakarta Persistence query language query:

SELECT ¢
FROM Customer ¢
WHERE (SELECT COUNT(o) FROM c.orders o) > 10

Note that joins involving the derived subquery root do not affect the join conditions of the containing query. The
following two query definitions thus differ in semantics:

CriteriaQuery<Order> q = cb.createQuery(Order.class);

Root<Order> order = q.from(Order.class);

Subquery<Integer> sq = q.subquery(Integer.class);

Root<Order> orderSub = sq.correlate(order);

Join<Order,Customer> customer = orderSub.join(Order_.customer);
Join<Customer,Account> account = customer.join(Customer_.accounts);

sq.select(account.get(Account_.balance));
q.where(cb.1t(cb.1literal(10000), cb.all(sq)));

and

CriteriaQuery<Order> q = cb.createQuery(Order.class);
Root<Order> order = q.from(Order.class);
Join<Order,Customer> customer = order.join(Order_.customer);
Subquery<Integer> sq = q.subquery(Integer.class);
Join<Order,Customer> customerSub = sq.correlate(customer);

152

Join<Customer,Account> account = customerSub.join(Customer_.accounts);

sq.select(account.get(Account_.balance));
g.where(cb.1t(cb.1iteral(10000), cb.all(sq)));

The first of these queries will return orders that are not associated with customers, whereas the second will not. The
corresponding Jakarta Persistence query language queries are the following:

SELECT o
FROM Order o
WHERE 10000 < ALL (
SELECT a.balance
FROM o.customer ¢ JOIN c.accounts a)

and

SELECT o
FROM Order o JOIN o.customer c
WHERE 10000 < ALL (

SELECT a.balance

FROM c.accounts a)

6.3.13. GroupBy and Having

The groupBy method of the CriteriaQuery interface is used to define a partitioning of the query results into groups. The
having method of the CriteriaQuery interface can be used to filter over the groups.

The arguments to the groupBy method are Expression instances.

When the groupBy method is used, each selection item that is not the result of applying an aggregate method must
correspond to a path expression that is used for defining the grouping. Requirements on the types that correspond to
the elements of the grouping and having constructs and their relationship to the select items are as specified in Section
4.8.

Example:

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<Customer> customer = q.from(Customer.class);

q.groupBy(customer.get(Customer_.status));
g.having(cb.in(customer.get(Customer_.status)).value(1).value(2));
g.select(cb.tuple(
customer.get(Customer_.status),
cb.avg(customer.get(Customer_.filledOrderCount)),
cb.count(customer)));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT c.status, AVG(c.filledOrderCount), COUNT(c)
FROM Customer c

GROUP BY c.status

HAVING c.status IN (1, 2)

6.3.14. Ordering the Query Results

The ordering of the results of a query is defined by use of the orderBy method of the CriteriaQuery instance. The
arguments to the orderBy method are Order instances.

153

An Order instance is created by means of the asc and desc methods of the CriteriaBuilder interface. An argument to
either of these methods must be one of the following:

* Any Expression instance that corresponds to an orderable state field of an entity or embeddable class abstract
schema type that is specified as an argument to the select or multiselect method or that is an argument to a tuple or
array constructor that is passed as an argument to the select method.

* Any Expression instance that corresponds to the same state field of the same entity or embeddable abstract schema
type as an Expression instance that is specified as an argument to the select or multiselect method or that is an
argument to a tuple or array constructor that is passed as an argument to the select method.

* An Expression instance that is specified as an argument to the select or multiselect method or that is an argument to
a tuple or array constructor that is passed as an argument to the select method or that is semantically equivalent to
such an Expression instance.

If more than one Order instance is specified, the order in which they appear in the argument list of the orderBy method
determines the precedence, whereby the first item has highest precedence.

SQL rules for the ordering of null values apply, as described in Section 4.10.

Example 1:

CriteriaQuery<Order> q = cb.createQuery(Order.class);
Root<Customer> c¢ = q.from(Customer.class);
Join<Customer,Order> o = c.join(Customer_.orders);
Join<Customer,Address> a = c.join(Customer_.address);

q.where(cb.equal(a.get(Address_.state), "CA"));

g.select(o);

q.orderBy(cb.desc(o.get(Order_.quantity)),
cb.asc(o.get(Order_.totalCost)));

This query corresponds to the following Jakarta Persistence query language query:

SELECT o

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA’

ORDER BY o.quantity DESC, o.totalcost

Example 2:

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<Customer> ¢ = q.from(Customer.class);
Join<Customer, Order> o = c.join(Customer_.orders);
Join<Customer, Address> a = c.join(Customer_.address);

g.where(cb.equal(a.get(Address_.state), "CA"));

q.orderBy(cb.asc(o.get(Order_.quantity)),
cb.asc(a.get(Address_.zipcode)));

g.multiselect(o.get(Order_.quantity),
a.get(Address_.zipcode));

This query corresponds to the following Jakarta Persistence query language query:

SELECT o.quantity, a.zipcode

FROM Customer c¢ JOIN c.orders o JOIN c.address a
WHERE a.state = 'CA’

ORDER BY o.quantity, a.zipcode

It can be equivalently expressed as follows:

154

CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<Customer> ¢ = q.from(Customer.class);
Join<Customer, Order> o = c.join(Customer_.orders);
Join<Customer, Address> a = c.join(Customer_.address);

g.where(cb.equal(a.get(Address_.state), "CA"));

q.orderBy(cb.asc(o.get(Order_.quantity)),
cb.asc(a.get(Address_.zipcode)));

q.select(cb.tuple(o.get(Order_.quantity),
a.get(Address_.zipcode)));

Example 3:

CriteriaQuery<Object[]> q = cb.createQuery(Object[].class);
Root<Customer> c¢ = q.from(Customer.class);

Join<Customer, Order> o = c.join(Customer_.orders);
Join<Customer, Address> a = c.join(Customer_.address);

q.where(cb.equal(a.get(Address_.state), "CA"),
cb.equal(a.get(Address_.county), "Santa Clara"));

q.select(cb.array(o.get(Order_.quantity),
cb.prod(o.get(Order_.totalCost), 1.08),
a.get(Address_.zipcode)));

g.orderBy(cb.asc(o.get(Order_.quantity)),
cb.asc(cb.prod(o.get(Order_.totalCost), 1.08)),
cb.asc(a.get(Address_.zipcode)));

This query corresponds to the following Jakarta Persistence query language query:

SELECT o.quantity, o.totalCost * 1.08 AS taxedCost, a.zipcode
FROM Customer c¢ JOIN c.orders o JOIN c.address a

WHERE a.state = 'CA' AND a.county = 'Santa Clara’

ORDER BY o.quantity, taxedCost, a.zipcode

6.3.15. Bulk Update and Delete Operations

A bulk update query is constructed through the creation and modification of a

jakarta.persistence.criteria.CriteriaUpdate object.

A Criterialpdate object is created by means of one of the createCriteriaUpdate methods of the CriteriaBuilder interface. A
Criterialpdate object is typed according to the entity type that is the target of the update. A Criterialpdate object has a
single root, the entity that is being updated.

A bulk delete query is constructed through the creation and modification of a

jakarta.persistence.criteria.CriteriaDelete object.

A CriteriaDelete object is created by means of one of the createCriteriaDelete methods of the CriteriaBuilder interface. A
CriteriaDelete object is typed according to the entity type that is the target of the delete. A CriteriaDelete object has a
single root, the entity that is being deleted.

Example 1:

Criterialpdate<Customer> q = cb.createCriterialpdate(Customer.class);
Root<Customer> ¢ = q.from(Customer.class);

q.set(c.get(Customer_.status), "outstanding")
.where(cb.1t(c.get(Customer_.balance), 10000));

The following Jakarta Persistence query language update statement is equivalent.

155

UPDATE Customer c
SET c.status = 'outstanding'
WHERE c.balance < 10000

Example 2:

CriteriaUpdate<Employee> q = cb.createCriterialpdate(Employee.class);
Root<Employee> e = q.from(Employee.class);

q.set(e.get(Employee_.address).get(Address_.building), 22)
.where(
cb.equal(e.get(Employee_.address).get(Address_.building), 14),
cb.equal(e.get(Employee_.address).get(Address_.city), "Santa Clara"),
cb.equal(e.get(Employee_.project).get(Project_.name), "Jakarta EE"));

Address is an embeddable class. Note that updating across implicit joins is not supported.

The following Jakarta Persistence query language update statement is equivalent.

UPDATE Employee e

SET e.address.building = 22

WHERE e.address.building = 14
AND e.address.city = 'Santa (lara’
AND e.project.name = 'Jakarta EE'

Example 3:

The following update query causes multiple attributes to be updated.

CriteriaUpdate<Employee> q = cb.createCriterialpdate(Employee.class);
Root<Employee> e = q.from(Employee.class);

q.set(e.get(Employee_.salary), cb.prod(e.get(Employee_.salary), 1.1f))
.set(e.get(Employee_.commission), cb.prod(e.get(Employee_.commission), 1.1f))
.set(e.get(Employee_.bonus), cb.sum(e.get(Employee_.bonus), 5000))
.where(cb.equal(e.get(Employee_.dept).get(Department_.name), "Sales"));

The following Jakarta Persistence query language update statement is equivalent.

UPDATE Employee e

SET e.salary = e.salary * 1.1,
e.commission = e.commission * 1.1,
e.bonus = e.bonus + 5000

WHERE e.dept.name = 'Sales'

Example 4:

CriteriaDelete<Customer> q = cb.createCriteriaDelete(Customer.class);
Root<Customer> ¢ = q.from(Customer.class);

q.where(
cb.equal(c.get(Customer_.status), "inactive"),
cb.isEmpty(c.get(Customer_.orders)));

The following Jakarta Persistence query language delete statement is equivalent.

DELETE

FROM Customer c

WHERE c.status = 'inactive'
AND c.orders IS EMPTY

156

Like bulk update and delete operations made through the Jakarta Persistence query language, criteria API bulk update
and delete operations map directly to database operations, bypassing any optimistic locking checks. Portable
applications using bulk update operations must manually update the value of the version column, if desired, and/or
manually validate the value of the version column.

The persistence context is not synchronized with the result of the bulk update or delete. See Section 4.11.

6.4. Constructing Strongly-typed Queries using the jakarta.persistence.metamodel Interfaces

Strongly-typed queries can also be constructed, either statically or dynamically, in the absence of generated metamodel
classes. The jakarta.persistence.metamodel interfaces are used to access the metamodel objects that correspond to the
managed classes.

The following examples illustrate this approach. These are equivalent to the example queries shown in Section 6.3.5.

The Metamodel interface is obtained from the EntityManager or EntityManagerFactory for the persistence unit, and then
used to obtain the corresponding metamodel objects for the managed types referenced by the queries.

Example 1:

EntityManager em = ...;

Metamodel mm = em.getMetamodel();

EntityType<Employee> emp_ =mm.entity(Employee.class);
EmbeddableType<ContactInfo> cinfo_ = mm.embeddable(ContactInfo.class);
EntityType<Phone> phone_ = mm.entity(Phone.class);
EmbeddableType<Address> addr_ = mm.embeddable(Address.class);

CriteriaQuery<Vendor> q = cb.createQuery(Vendor.class);
Root<Employee> emp = q.from(Employee.class);
Join<Employee, ContactInfo> cinfo =
emp.join(emp_.getSingularAttribute("contactInfo", ContactInfo.class));
Join<ContactInfo, Phone> p =
cinfo.join(cinfo_.getSingularAttribute("phones", Phone.class));
q.where(
cb.equal(emp.get(emp_.getSingularAttribute("contactInfo", ContactInfo.class))
.get(cinfo_.getSingularAttribute("address", Address.class))
.get(addr_.getSingularAttribute("zipcode", String.class)), "95054"))
.select(p.get(phone_.getSingularAttribute("vendor",Vendor.class)));

Example 2:

EntityManager em = ...;
Metamodel mm = em.getMetamodel();

EntityType<Item> item_ = mm.entity(Item.class);
CriteriaQuery<Tuple> q = cb.createTupleQuery();
Root<Item> item = q.from(Item.class);
MapJloin<Item, String, Object> photo =
item.join(item_.getMap("photos", String.class, Object.class));
g.multiselect(
item.get(item_.getSingularAttribute("name", String.class)), photo)
.where(cb.1like(photo.key(), "%egret%"));

6.5. Use of the Criteria API with Strings to Reference Attributes

The Criteria API provides the option of specifying the attribute references used in joins and navigation by attribute
names used as arguments to the various join, fetch, and get methods.

157

The resulting queries have the same semantics as described in Section 6.3, but do not provide the same level of type
safety.

The examples in this section illustrate this approach. These examples are derived from among those of sections Section
6.3.3 and Section 6.3.5.

Example 1:

CriteriaBuilder cb = ...

CriteriaQuery<String> q = cb.createQuery(String.class);

Root<Customer> cust = q.from(Customer.class);

Join<Order, Item> item = cust.join("orders").join("lineltems");

g.select(cust.<String>get("name"))
.where(cb.equal(item.get("product").get("productType"), "printer"));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT c.name
FROM Customer ¢ JOIN c.orders o JOIN o.lineltems i
WHERE i.product.productType = 'printer’

It is not required that type parameters be used. However, their omission may result in compiler warnings, as with the
below version of the same query:

CriteriaBuilder cb = ...

CriteriaQuery q = cb.createQuery();

Root cust = q.from(Customer.class);

Join item = cust.join("orders").join("lineltems");

q.select(cust.get("name")).where(
cb.equal(item.get("product”).get("productType"),"printer"));

Example 2:

The following query uses an outer join:

CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> cust = q.from(Customer.class);
Join<Customer,Order> order = cust.join("orders", JoinType.LEFT);
q.where(cb.equal(cust.get("status"), 1))

.select(cust);

This query is equivalent to the following Jakarta Persistence query language query:

SELECT ¢ FROM Customer c¢ LEFT JOIN c.orders o
WHERE c.status = 1

Example 3:

In the following example, ContactInfo is an embeddable class consisting of an address and set of phones. Phone is an
entity.

CriteriaQuery<Vendor> q = cb.createQuery(Vendor.class);
Root<Employee> emp = q.from(Employee.class);
Join<ContactInfo, Phone> phone = emp.join("contactInfo").join("phones");
q.where(cb.equal(emp.get("contactInfo")
.get("address")
.get("zipcode"), "95054"));
q.select(phone.<Vendor>get("vendor"));

158

The following Jakarta Persistence query language query is equivalent:

SELECT p.vendor
FROM Employee e JOIN e.contactInfo.phones p
WHERE e.contactInfo.address.zipcode = '95054"

Example 4:

In this example, the photos attribute corresponds to a map from photo label to filename. The map key is a string, the
value an object.

CriteriaQuery<Object> q = cb.createQuery();

Root<Item> item = q.from(Item.class);

MapJloin<Item, String, Object> photo = item.joinMap("photos");

g.multiselect(item.get("name"), photo)
.where(cb.like(photo.key(), "%egret%"));

This query is equivalent to the following Jakarta Persistence query language query:

SELECT 1i.name, p
FROM Item i JOIN i.photos p
WHERE KEY(p) LIKE '%egret%'

6.6. Query Modification

A CriteriaQuery, Criterialpdate, or CriteriaDelete object may be modified, either before or after Query or TypedQuery
objects have been created and executed from it. For example, such modification may entail replacement of the where
predicate or the select list. Modifications may thus result in the same query object “base” being reused for several
query instances.

For example, the user might create and execute a query from the following CriteriaQuery object:

CriteriaQuery<Customer> q = cb.createQuery(Customer.class);
Root<Customer> ¢ = q.from(Customer.class);

Predicate pred = cb.equal(c.get(Customer_.address).get(Address_.city),"Chicago");

g.select(c);
g.where(pred);

The CriteriaQuery object might then be modified to reflect a different predicate condition, for example:

Predicate pred2 = cb.gt(c.get(Customer_.balanceOwed), 1000);
q.where(pred2);

Note, however, that query elements—in this example, predicate conditions—are dependent on the CriteriaQuery,
Criterialpdate, or CriteriaDelete instance, and are thus not portably reusable with different instances.

6.7. Query Execution

A criteria query is executed by passing the CriteriaQuery, Criterialpdate, or CriteriaDelete object to the createQuery
method of the EntityManager interface to create an executable TypedQuery object (or, in the case of CriteriaUpdate and
CriteriaDelete, a Query object), which can then be passed to one of the query execution methods of the TypedQuery or Query
interface.

A CriteriaQuery, Criterialpdate, or CriteriaDelete object may be further modified after an executable query object has

159

been created from it. The modification of the CriteriaQuery, CriteriaUpdate, or CriteriaDelete object does not have any
impact on the already created executable query object. If the modified CriteriaQuery, CriteriaUpdate, or CriteriaDelete
object is passed to the createQuery method, the persistence provider must insure that a new executable query object is
created and returned that reflects the semantics of the changed query definition.

CriteriaQuery, CriteriaUpdate, and CriteriaDelete objects must be serializable. A persistence vendor is required to
support the subsequent deserialization of such an object into a separate JVM instance of that vendor’s runtime, where
both runtime instances have access to any required vendor implementation classes. CriteriaQuery, CriteriaUpdate, and
CriteriaDelete objects are not required to be interoperable across vendors.

[1] The attributes of these metamodel objects play a role analogous to that which would be played by member literals.

[2] Metamodel objects are used to specify typesafe nagivation through joins and through path expressions. These
metamodel objects capture both the source and target types of the attribute through which navigation occurs, and are
thus the mechanism by which typesafe navigation is achieved.

[3] Attribute names serve this role for string-based queries. See Section 6.5.

[4] Attribute names serve this role for string-based queries. See Section 6.5.

160

Chapter 7. Entity Managers and Persistence Contexts

7.1. Persistence Contexts

A persistence context is a set of managed entity instances in which for any persistent entity identity there is a unique
entity instance. Within the persistence context, the entity instances and their lifecycle are managed by the entity
manager.

In Jakarta EE environments, a JTA transaction typically involves calls across multiple components. Such components
may often need to access the same persistence context within a single transaction. To facilitate such use of entity
managers in Jakarta EE environments, when an entity manager is injected into a component or looked up directly in
the JNDI naming context, its persistence context will automatically be propagated with the current JTA transaction, and
the EntityManager references that are mapped to the same persistence unit will provide access to this same persistence
context within the JTA transaction. This propagation of persistence contexts by the Jakarta EE container avoids the
need for the application to pass references to EntityManager instances from one component to another. An entity
manager for which the container manages the persistence context in this manner is termed a container-managed entity
manager. A container-managed entity manager’s lifecycle is managed by the Jakarta EE container.

In less common use cases within Jakarta EE environments, applications may need to access a persistence context that is
“stand-alone”—i.e. not propagated along with the JTA transaction across the EntityManager references for the given
persistence unit. Instead, each instance of creating an entity manager causes a new isolated persistence context to be
created that is not accessible through other EntityManager references within the same transaction. These use cases are
supported through the createEntityManager methods of the EntityManagerFactory interface. An entity manager that is used
by the application to create and destroy a persistence context in this manner is termed an application-managed entity
manager. An application-managed entity manager’s lifecycle is managed by the application.

Both container-managed entity managers and application-managed entity managers and their persistence contexts are
required to be supported in Jakarta EE web containers and EJB containers. Within an EJB environment, container-
managed entity managers are typically used.

In Java SE environments and in Jakarta EE application client containers, only application-managed entity managers are

required to be ™.

7.2. Obtaining an EntityManager

The entity manager for a persistence context is obtained from an entity manager factory.

When container-managed entity managers are used (in Jakarta EE environments), the application does not interact
with the entity manager factory. The entity managers are obtained directly through dependency injection or from JNDI,
and the container manages interaction with the entity manager factory transparently to the application.

When application-managed entity managers are used, the application must use the entity manager factory to manage
the entity manager and persistence context lifecycle.

An entity manager must not be shared among multiple concurrently executing threads, as the entity manager and
persistence context are not required to be threadsafe. Entity managers must only be accessed in a single-threaded
manner.

7.2.1. Obtaining an Entity Manager in the Jakarta EE Environment

A container-managed entity manager is obtained by the application through dependency injection or through direct
lookup of the entity manager in the JNDI namespace. The container manages the persistence context lifecycle and the

161

creation and the closing of the entity manager instance transparently to the application.

The PersistenceContext annotation is used for entity manager injection. The type element specifies whether a
transaction-scoped or extended persistence context is to be used, as described in Section 7.7. The synchronization
element specifies whether the persistence context is always automatically joined to the current transaction (the
default) or is not joined to the current transaction unless the joinTransaction method is invoked by the application. The
unitName element may optionally be specified to designate the persistence unit whose entity manager factory is used by
the container. The semantics of the persistence context synchronization type are further described in Section 7.7.1.
Section Section 10.5.2 provides further information about the unitName element.

For example,

EntityManager em;

(type=PersistenceContextType.EXTENDED)
EntityManager orderEM;

The JNDI lookup of an entity manager is illustrated below:
(name="0rderEM")
public class MySessionBean implements MyInterface {
SessionContext ctx;

public void doSomething() {
EntityManager em = (EntityManager)ctx.lookup("OrderEM");

/] ...

7.2.2. Obtaining an Application-managed Entity Manager

An application-managed entity manager is obtained by the application from an entity manager factory.
The EntityManagerFactory API used to obtain an application-managed entity manager is the same independent of

whether this API is used in Jakarta EE or Java SE environments.

7.3. Obtaining an Entity Manager Factory

The EntityManagerFactory interface is used by the application to create an application-managed entity manager.

Each entity manager factory provides entity manager instances that are all configured in the same manner (e.g.,
configured to connect to the same database, use the same initial settings as defined by the implementation, etc.)

More than one entity manager factory instance may be available simultaneously in the JVM."!

Methods of the EntityManagerFactory interface are threadsafe.

7.3.1. Obtaining an Entity Manager Factory in a Jakarta EE Container

Within a Jakarta EE environment, an entity manager factory can be injected using the PersistenceUnit annotation or
obtained through JNDI lookup. The unitName element may optionally be specified to designate the persistence unit
whose entity manager factory is used. (See Section 10.5.2).

162

For example,

EntityManagerFactory emf;

7.3.2. Obtaining an Entity Manager Factory in a Java SE Environment

Outside a Jakarta EE container environment, the jakarta.persistence.Persistence class is the bootstrap class that
provides access to an entity manager factory. The application creates an entity manager factory by calling the
createEntityManagerFactory method of the jakarta.persistence.Persistence class, described in Section 9.7.

For example,

EntityManagerFactory emf =
jakarta.persistence.Persistence.createEntityManagerFactory("Order");
EntityManager em = emf.createEntityManager();

7.3.3. Obtaining an Entity Manager Factory for a programmatically-defined persistence unit

The class jakarta.persistence.PersistenceConfiguration described in Section 9.8 may be used to programmatically define
and configure a persistence unit (see Section 8.1), as an alternative to packaging a persistence.xml file, mapping files,
and classes inside an archive as described in Section 8.2.

An EntityManagerFactory may be obtained directly from the PersistenceConfiguration.

For example,

DataSource datasource = (DataSource)
new InitialContext()
.lookup("java:global/jdbc/MyOrderDB");
EntityManagerFactory emf =
new PersistenceConfiguration()
.name("OrderManagement")
.jtaDataSource(datasource)
.mappingFile("ormap.xml")
.managedClass(Order.class)
.managed(Class(Customer.class)
.createEntityManagerFactory();

7.4. EntityManagerFactory Interface

The EntityManagerFactory interface found in Section B.3

An EntityManagerFactory may be used by the application to obtain an application-managed entity manager. When the
application has finished using the entity manager factory, and/or at application shutdown, the application should close
the entity manager factory. Once an entity manager factory has been closed, all its entity managers are considered to
be in the closed state.

An EntityManagerFactory also provides access to information and services that are global to the persistence unit. This
includes access to the second level cache that is maintained by the persistence provider and to the PersistenceUnitUtil
interface. The Cache interface is described in Section 3.10.3; the PersistenceUnitUtil interface in Section 7.11.

Any number of vendor-specific properties may be included in the map passed to the createEntityManager methods.
Properties that are not recognized by a vendor must be ignored.

Note that the policies of the installation environment may restrict some information from being made available
through the EntityManagerFactory getProperties method (for example, JDBC user, password, URL).

163

Vendors should use vendor namespaces for properties (e.g., com.acme.persistence.logging). Entries that make use of the
namespace jakarta.persistence and its subnamespaces must not be used for vendor-specific information. The
namespace jakarta.persistence is reserved for use by this specification.

7.5. Controlling Transactions

Depending on the transactional type of the entity manager, transactions involving EntityManager operations may be
controlled either through JTA or through use of the resource-local EntityTransaction API, which is mapped to a resource
transaction over the resource that underlies the entities managed by the entity manager.

An entity manager whose underlying transactions are controlled through JTA is termed a JTA entity manager.

An entity manager whose underlying transactions are controlled by the application through the EntityTransaction API is
termed a resource-local entity manager.

A container-managed entity manager must be a JTA entity manager. JTA entity managers are only specified for use in
Jakarta EE containers.

An application-managed entity manager may be either a JTA entity manager or a resource-local entity manager.

An entity manager is defined to be of a given transactional type—either JTA or resource-local—at the time its
underlying entity manager factory is configured and created. See sections Section 8.2.1.2 and Section 9.1.

Both JTA entity managers and resource-local entity managers are required to be supported in Jakarta EE web
containers and EJB containers. Within an EJB environment, a JTA entity manager is typically used. In general, in Java
SE environments only resource-local entity managers are supported.

7.5.1. JTA EntityManagers

An entity manager whose transactions are controlled through JTA is a JTA entity manager. In general, a JTA entity
manager participates in the current JTA transaction, which is begun and committed external to the entity manager and
propagated to the underlying resource manager.

7.5.2. Resource-local EntityManagers

An entity manager whose transactions are controlled by the application through the EntityTransaction API is a resource-
local entity manager. A resource-local entity manager transaction is mapped to a resource transaction over the
resource by the persistence provider. Resource-local entity managers may use server or local resources to connect to
the database and are unaware of the presence of JTA transactions that may or may not be active.

7.5.3. The EntityTransaction Interface

The EntityTransaction interface found in Section B.2 is used to control resource transactions on resource-local entity
managers. The getTransaction() method of EntityManager returns an instance of the EntityTransaction interface.

When a resource-local entity manager is used, and the persistence provider runtime throws an exception defined to
cause transaction rollback, the persistence provider must mark the transaction for rollback.

If the EntityTransaction.commit operation fails, the persistence provider must roll back the transaction.

The following example illustrates the creation of an entity manager factory in a Java SE environment, and its use in
creating and using a resource-local entity manager.

import jakarta.persistence.*;

164

public class PasswordChanger {
public static void main (String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("Order");
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();

User user = em.createQuery
("SELECT u FROM User u WHERE u.name=:name AND u.pass=:pass", User.class)
.setParameter("name", args[0])
.setParameter("pass", args[1])
.getSingleResult();

user.setPassword(args[2]);

em.getTransaction().commit();
em.close();
emf.close();

7.6. The runInTransaction and callInTransaction methods

The runInTransaction and callInTransaction methods of the EntityManagerFactory provide a shortcut for persistence
context and transaction management with an application-managed EntityManager.

entityManagerFactory.runInTransaction(entityManager -> {
User user = em.createQuery
("SELECT u FROM User u WHERE u.name=:name AND u.pass=:pass”, User.class)
.setParameter("name", args[0])
.setParameter("pass", args[1])
.getSingleResult();

user.setPassword(args[2]);

1))

The argument function passed to runInTransaction or callInTransaction must be called and passed a new instance of
EntityManager. When the argument function returns or throws an exception, this EntityManager must be closed before
runInTransaction or callInTransaction returns.

The argument function is executed in the context of a transaction associated with this new EntityManager.

o If the transaction type of the persistence unit is JTA, and there is a JTA transaction already associated with the caller,
then the EntityManager is associated with this current transaction. If the argument function throws an exception, the
JTA transaction must be marked for rollback, and the exception must be rethrown by runInTransaction or
calllnTransaction. Otherwise, callInTransaction must return the same value returned by the argument function.

* Otherwise, if the transaction type of the persistence unit is resource-local, or if there is no JTA transaction already
associated with the caller, then the EntityManager is associated with a new transaction. If the argument function
throws an exception, this transaction must be rolled back, and then the exception must be rethrown by
runInTransaction or calllnTransaction. If the argument function returns, then runInTransaction or calllnTransaction
must attempt to commit the transaction. If the attempt to commit the transaction fails, the exception must be
rethrown. Otherwise, callInTransaction must return the same value returned by the argument function.

The application should not attempt to manage the lifecycle of the transaction or EntityManager directly. If the application
calls an operation of EntityTransaction from within a call to runInTransaction or callIlnTransaction, the behavior is
undefined.

165

7.7. Container-managed Persistence Contexts

When a container-managed entity manager is used, the lifecycle of the persistence context is always managed
automatically, transparently to the application, and the persistence context is propagated with the JTA transaction.

A container-managed persistence context may be defined to have either a lifetime that is scoped to a single transaction
or an extended lifetime that spans multiple transactions, depending on the PersistenceContextType that is specified when
its entity manager is created. This specification refers to such persistence contexts as transaction-scoped persistence
contexts and extended persistence contexts respectively.

The lifetime of the persistence context is declared using the PersistenceContext annotation or the persistence-context-ref
deployment descriptor element. By default, a transaction-scoped persistence context is used.

Sections Section 7.7.2 and Section 7.7.3 describe transaction-scoped and extended persistence contexts in the absence of
persistence context propagation. Persistence context propagation is described in Section 7.7.4.

Persistence contexts are always associated with an entity manager factory. In the following sections, “the persistence
context” should be understood to mean “the persistence context associated with a particular entity manager factory”.

7.7.1. Persistence Context Synchronization Type

By default, a container-managed persistence context is of type SynchronizationType.SYNCHRONIZED. Such a persistence
context is automatically joined to the current JTA transaction, and updates made to the persistence context are
propagated to the underlying resource manager.

A container-managed persistence context may be specified to be of type SynchronizationType.UNSYNCHRONIZED. A
persistence context of type SynchronizationType.UNSYNCHRONIZED is not enlisted in any JTA transaction unless explicitly
joined to that transaction by the application. A persistence context of type SynchronizationType.UNSYNCHRONIZED is enlisted
in a JTA transaction and registered for subsequent transaction notifications against that transaction by the invocation
of the EntityManager joinTransaction method. The persistence context remains joined to the transaction until the
transaction commits or rolls back. After the transaction commits or rolls back, the persistence context will not be joined
to any subsequent transaction unless the joinTransaction method is invoked in the scope of that subsequent transaction.

A persistence context of type SynchronizationType.UNSYNCHRONIZED must not be flushed to the database unless it is joined to
a transaction. The application’s use of queries with pessimistic locks, bulk update or delete queries, etc. result in the
provider throwing the TransactionRequiredException. After the persistence context has been joined to the JTA transaction,
these operations are again allowed.

The application is permitted to invoke the persist, merge, remove, and refresh entity lifecycle operations on an entity
manager of type SynchronizationType.UNSYNCHRONIZED independent of whether the persistence context is joined to the
current transaction. After the persistence context has been joined to a transaction, changes in a persistence context can
be flushed to the database either explicitly by the application or by the provider. If the flush method is not explicitly
invoked, the persistence provider may defer flushing until commit time depending on the operations invoked and the
flush mode setting in effect.

If an extended persistence context of type SynchronizationType.UNSYNCHRONIZED has not been joined to the current JTA
transaction, rollback of the JTA transaction will have no effect upon the persistence context. In general, it is
recommended that a non-JTA datasource be specified for use by the persistence provider for a persistence context of
type SynchronizationType.UNSYNCHRONIZED that has not been joined to a JTA transaction in order to alleviate the risk of
integrating uncommitted changes into the persistence context in the event that the transaction is later rolled back.

If a persistence context of type SynchronizationType.UNSYNCHRONIZED has been joined to the JTA transaction, transaction
rollback will cause the persistence context to be cleared and all pre-existing managed and removed instances to
become detached. (See Section 3.4.3.)

166

When a JTA transaction exists, a persistence context of type SynchronizationType.UNSYNCHRONIZED is propagated with that
transaction according to the rules in Section 7.7.4.1 regardless of whether the persistence context has been joined to
that transaction.

7.7.2. Container-managed Transaction-scoped Persistence Context

The application can obtain a container-managed entity manager with transaction-scoped persistence context by
injection or direct lookup in the JNDI namespace. The persistence context type for the entity manager is defaulted or
defined as PersistenceContextType.TRANSACTION.

A new persistence context begins when the container-managed entity manager is invoked" in the scope of an active
JTA transaction, and there is no current persistence context already associated with the JTA transaction. The
persistence context is created and then associated with the JTA transaction. This association of the persistence context
with the JTA transaction is independent of the synchronization type of the persistence context and whether the
persistence context has been joined to the transaction.

The persistence context ends when the associated JTA transaction commits or rolls back, and all entities that were
managed by the EntityManager become detached.”

If the entity manager is invoked outside the scope of a transaction, any entities loaded from the database will
immediately become detached at the end of the method call.

7.7.3. Container-managed Extended Persistence Context

A container-managed extended persistence context can only be initiated within the scope of a stateful session bean. It
exists from the point at which the stateful session bean that declares a dependency on an entity manager of type
PersistenceContextType.EXTENDED is created, and is said to be bound to the stateful session bean. The dependency on the
extended persistence context is declared by means of the PersistenceContext annotation or persistence-context-ref
deployment descriptor element. The association of the extended persistence context with the JTA transaction is
independent of the synchronization type of the persistence context and whether the persistence context has been
joined to the transaction.

The persistence context is closed by the container when the @Remove method of the stateful session bean completes (or
the stateful session bean instance is otherwise destroyed).

7.7.3.1. Inheritance of Extended Persistence Context

If a stateful session bean instantiates a stateful session bean (executing in the same EJB container instance) which also
has such an extended persistence context with the same synchronization type, the extended persistence context of the
first stateful session bean is inherited by the second stateful session bean and bound to it, and this rule recursively
applies—independently of whether transactions are active or not at the point of the creation of the stateful session
beans. If the stateful session beans differ in declared synchronization type, the EJBException is thrown by the
container.

If the persistence context has been inherited by any stateful session beans, the container does not close the persistence
context until all such stateful session beans have been removed or otherwise destroyed.

7.7.4. Persistence Context Propagation

As described in Section 7.1, a single persistence context may correspond to one or more JTA entity manager instances

(all associated with the same entity manager factory'®).

167

The persistence context is propagated across the entity manager instances as the JTA transaction is propagated. A
persistence context of type SynchronizationType.UNSYNCHRONIZED is propagated with the JTA transaction regardless of
whether it has been joined to the transaction.

Propagation of persistence contexts only applies within a local environment. Persistence contexts are not propagated to

remote tiers.

7.7.4.1. Requirements for Persistence Context Propagation

Persistence contexts are propagated by the container across component invocations as follows.

If a component is called and there is no JTA transaction or the JTA transaction is not propagated, the persistence context
is not propagated.

 If an entity manager is then invoked from within the component:
o Invocation of an entity manager defined with PersistenceContextType.TRANSACTION will result in use of a new
persistence context (as described in Section 7.7.2).
- Invocation of an entity manager defined with PersistenceContextType.EXTENDED will result in the use of the existing
extended persistence context bound to that component.
o If the entity manager is invoked within a JTA transaction, the persistence context will be associated with the JTA
transaction.

If a component is called and the JTA transaction is propagated into that component:

« If the component is a stateful session bean to which an extended persistence context has been bound and there is a
different persistence context associated with the JTA transaction, an EJBException is thrown by the container.

o If there is a persistence context of type SynchronizationType.UNSYNCHRONIZED associated with the JTA transaction and the
target component specifies a persistence context of type SynchronizationType.SYNCHRONIZED, the I1legalStateException is
thrown by the container.

* Otherwise, if there is a persistence context associated with the JTA transaction, that persistence context is
propagated and used.

e Note that a component with a persistence context of type SynchronizationType.UNSYNCHRONIZED may be
called by a component propagating either a persistence context of type
SynchronizationType.UNSYNCHRONIZED or a persistence context of type SynchronizationType.SYNCHRONIZED into
it.

The following example shows a container-managed, transaction-scoped persistence context:

public class ShoppingCartImpl implements ShoppingCart {
EntityManager em;

public Order getOrder(Long id) {
Order order = em.find(Order.class, id);
order.getLineltems();
return order;

b
public Product getProduct(String name) {
return (Product) em.createQuery("select p from Product p where p.name = : name")
.setParameter("name", name)
.getSingleResult();

168

public LineItem createlLineItem(Order order, Product product, int quantity) {
LineItem 1i = new LineItem(order, product, quantity);
order.getLineltems().add(11);
em.persist(1li);
return 1i;

This example shows a container-managed extended persistence context:

/*

* An extended transaction context is used. The entities remain

* managed in the persistence context across multiple transactions.
*/

(REQUIRES_NEW)
public class ShoppingCartImpl implements ShoppingCart {
(type = EXTENDED)
EntityManager em;

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);

}
public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p where p.name = : name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createlLineItem(int quantity) {
LineItem 1i = new LineItem(order, product, quantity);
order.getLineltems().add(11);
em.persist(1li);
return 1i;

7.8. Application-managed Persistence Contexts

When an application-managed entity manager is used, the application interacts directly with the persistence provider’s
entity manager factory to manage the entity manager lifecycle and to obtain and destroy persistence contexts.

All such application-managed persistence contexts are extended in scope, and can span multiple transactions.

The EntityManagerFactory . createEntityManager method and the EntityManager close and isOpen methods are used to
manage the lifecycle of an application-managed entity manager and its associated persistence context.

The extended persistence context exists from the point at which the entity manager has been created using
EntityManagerFactory.createEntityManager until the entity manager is closed by means of EntityManager.close.

An extended persistence context obtained from the application-managed entity manager is a stand-alone persistence
context—it is not propagated with the transaction.

When a JTA application-managed entity manager is used, an application-managed persistence context may be specified
to be of type SynchronizationType.UNSYNCHRONIZED. A persistence context of type SynchronizationType.UNSYNCHRONIZED is not
enlisted in any JTA transaction unless explicitly joined to that transaction by the application. A persistence context of
type SynchronizationType.UNSYNCHRONIZED is enlisted in a JTA transaction and registered for subsequent transaction

169

notifications against that transaction by the invocation of the EntityManager joinTransaction method. The persistence
context remains joined to the transaction until the transaction commits or rolls back. After the transaction commits or
rolls back, the persistence context will not be joined to any subsequent transaction unless the joinTransaction method is
invoked in the scope of that subsequent transaction.

When a JTA application-managed entity manager is used, if the entity manager is created outside the scope of the
current JTA transaction, it is the responsibility of the application to join the entity manager to the transaction (if
desired) by calling EntityManager.joinTransaction. If the entity manager is created outside the scope of a JTA transaction,
it is not joined to the transaction unless EntityManager.joinTransaction is called.

The EntityManager.close method closes an entity manager to release its persistence context and other resources. After
calling close, the application must not invoke any further methods on the EntityManager instance except for
getTransaction and isOpen, or the I1legalStateException will be thrown. If the close method is invoked when a transaction
is active, the persistence context remains managed until the transaction completes.

The EntityManager.isOpen method indicates whether the entity manager is open. The isOpen method returns true until the
entity manager has been closed.

This example shows an application-managed persistence context used in a stateless session bean:

/*

* Container-managed transaction demarcation is used.

* The session bean creates and closes an entity manager
* in each business method.

*/

public class ShoppingCartImpl implements ShoppingCart {
private EntityManagerFactory emf;

public Order getOrder(Long id) {
EntityManager em = emf.createEntityManager();
Order order = em.find(Order.class, id);
order.getLineltems();
em.close();
return order;

}

public Product getProduct() {

EntityManager em = emf.createEntityManager();

Product product = (Product)
em.createQuery("select p from Product p where p.name = :name")
.setParameter("name", name)
.getSingleResult();

em.close();

return product;

}

public LineItem createLineItem(Order order, Product product, int quantity) {
EntityManager em = emf.createEntityManager();
LineItem 1i = new LineItem(order, product, quantity);
order.getLineltems().add(11);
em.persist(li);
em.close();
return 1i; // remains managed until JTA transaction ends

This examples shows an application-managed persistence context used in a stateless session bean:
/*

170

* Container-managed transaction demarcation is used.
* The session bean creates entity manager in PostConstruct
* method and clears persistence context at the end of each
* business method.
*/
@Stateless
public class ShoppingCartImpl implements ShoppingCart {
@Persistencelnit
private EntityManagerFactory emf;

private EntityManager em;

@PostConstruct
public void init() {
em = emf.createEntityManager();

}

public Order getOrder(Long id) {
Order order = em.find(Order.class, id);
order.getLineltems();
em.clear(); // entities are detached
return order;

}

public Product getProduct() {
Product product = (Product)
em.createQuery("select p from Product p where p.name =
.setParameter("name", name)
.getSingleResult();
em.clear();
return product;

}

public LineItem createlLineItem(Order order, Product product, int quantity) {
em.joinTransaction();
LineItem 1i = new LineItem(order, product, quantity);
order.getLineltems().add(11);
em.persist(1i);
// persistence context is flushed to database;
// all updates will be committed to database on tx commit
em.flush();
// entities in persistence context are detached
em.clear();
return 1i;

}

@PreDestroy
public void destroy() {
em.close();

}

This example shows an application-managed persistence context used in a stateful session bean:

/~k

* Container-managed transaction demarcation is used.

* Entities remain managed until the entity manager is closed.

*/

@Stateful

public class ShoppingCartImpl implements ShoppingCart {
@Persistencelnit
private EntityManagerFactory emf;

private EntityManager em;

private Order order;

171

private Product product;

@PostConstruct
public void init() {
em = emf.createEntityManager();

}

public void initOrder(Long id) {
order = em.find(Order.class, id);

b
public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p where p.name = : name"
.setParameter("name", name)
.getSingleResult();

}

public LineItem createlLineltem(int quantity) {
em.joinTransaction();
LineItem 1i = new LineItem(order, product, quantity);
order.getLineltems().add(11);
em.persist(1li);
return 1i;

}

©@Remove
public void destroy() {
em.close();

}

Finally, this example shows an application-managed persistence context used with a resource transaction:

172

// Usage in an ordinary Java class
public class ShoppingImpl {

private EntityManager em;
private EntityManagerFactory emf;

public ShoppingCart() {
emf = Persistence.createEntityManagerFactory("orderMgt");
em = emf.createEntityManager();

}

private Order order;
private Product product;

public void initOrder(Long id) {
order = em.find(Order.class, id);

b
public void initProduct(String name) {
product = (Product) em.createQuery("select p from Product p where p.name = : name")
.setParameter("name", name)
.getSingleResult();

}

public LineItem createlLineItem(int quantity) {
em.getTransaction().begin();
LineItem 1i = new LineItem(order, product, quantity);
order.getLineltems().add(11);
em.persist(1li);
em.getTransaction().commit();
return 1i;

public void destroy() {
em.close();
emf.close();

7.9. Requirements on the Container

7.9.1. Application-managed Persistence Contexts

When application-managed persistence contexts are used, the container must instantiate the entity manager factory
and expose it to the application via JNDI. The container might use internal APIs to create the entity manager factory, or
it might use the PersistenceProvider.createContainerEntityManagerFactory method. However, the container is required to
support third-party persistence providers, and in this case the container must use the
PersistenceProvider.createContainerEntityManagerFactory method to create the entity manager factory and the
EntityManagerFactory.close method to destroy the entity manager factory prior to shutdown (if it has not been previously
closed by the application).

7.9.2. Container Managed Persistence Contexts

The container is responsible for managing the lifecycle of container-managed persistence contexts, for injecting
EntityManager references into web components and session bean and message-driven bean components, and for making
EntityManager references available to direct lookups in JNDI.

When operating with a third-party persistence provider, the container uses the contracts defined in Section 7.10 to
create and destroy container-managed persistence contexts. It is undefined whether a new entity manager instance is
created for every persistence context, or whether entity manager instances are sometimes reused. Exactly how the
container maintains the association between persistence context and JTA transaction is not defined.

If a persistence context is already associated with a JTA transaction, the container uses that persistence context for
subsequent invocations within the scope of that transaction, according to the semantics for persistence context
propagation defined in Section 7.7.4.

7.10. Runtime Contracts between the Container and Persistence Provider

This section describes contracts between the container and the persistence provider for the pluggability of third-party

persistence providers. Containers are required to support these pluggability contracts.”

7.10.1. Container Responsibilities

For the management of a transaction-scoped persistence context, if there is no EntityManager already associated with
the JTA transaction:

* The container creates a new entity manager by calling EntityManagerFactory.createEntityManager when the first
invocation of an entity manager with PersistenceContextType.TRANSACTION occurs within the scope of a business
method executing in the JTA transaction.

 After the JTA transaction has completed (either by transaction commit or rollback), the container closes the entity
manager by calling EntityManager.close. ™ Note that the JTA transaction may rollback in a background thread (e.g., as
a result of transaction timeout), in which case the container should arrange for the entity manager to be closed but
the EntityManager.close method should not be concurrently invoked while the application is in an EntityManager
invocation.

173

The container must throw the TransactionRequiredException if a transaction-scoped persistence context is used and the
EntityManager persist, remove, merge, or refresh method is invoked when no transaction is active.

For stateful session beans with extended persistence contexts:

* The container creates an entity manager by calling EntityManagerFactory.createEntityManager when a stateful session
bean is created that declares a dependency on an entity manager with PersistenceContextType.EXTENDED. (See Section
7.7.3).

* The container closes the entity manager by calling EntityManager.close after the stateful session bean and all other
stateful session beans that have inherited the same persistence context as the entity manager have been removed.

* When a business method of the stateful session bean is invoked, if the stateful session bean uses container managed
transaction demarcation, and the entity manager is not already associated with the current JTA transaction, the
container associates the entity manager with the current JTA transaction and, if the persistence context is of type
SynchronizationType.SYNCHRONIZED, the container calls EntityManager.joinTransaction. If there is a different persistence
context already associated with the JTA transaction, the container throws the EJBException.

* When a business method of the stateful session bean is invoked, if the stateful session bean uses bean managed
transaction demarcation and a UserTransaction is begun within the method, the container associates the
persistence context with the JTA transaction and, if the persistence context is of type
SynchronizationType.SYNCHRONIZED, the container calls EntityManager.joinTransaction.

The container must throw the I1legalStateException if the application calls EntityManager.close on a container-managed
entity manager.

When the container creates an entity manager, it may pass a map of properties to the persistence provider by using the
EntityManagerFactory.createEntityManager (Map map) method. If properties have been specified in the PersistenceContext
annotation or the persistence-context-ref deployment descriptor element, this method must be used and the map must
include the specified properties.

If the application invokes EntityManager.unwrap(Class<T> cls), and the container cannot satisfy the request, the container
must delegate the unwrap invocation to the provider’s entity manager instance.

7.10.2. Provider Responsibilities

The Provider has no knowledge of the distinction between transaction-scoped and extended persistence contexts. It
provides entity managers to the container when requested and registers for transaction synchronization notifications.

* When EntityManagerFactory.createEntityManager is invoked, the provider must create and return a new entity
manager. If a JTA transaction is active and the persistence context is of type SynchronizationType.SYNCHRONIZED, the
provider must register for synchronization notifications against the JTA transaction.

¢ When EntityManager.joinTransaction is invoked, the provider must register for synchronization notifications against
the current JTA transaction if a previous joinTransaction invocation for the transaction has not already been
processed.

* When the JTA transaction commits, if the persistence context is of type SynchronizationType.SYNCHRONIZED or has
otherwise been joined to the transaction, the provider must flush all modified entity state to the database.

* When the JTA transaction rolls back, the provider must detach all managed entities if the persistence context is of
type SynchronizationType.SYNCHRONIZED or has otherwise been joined to the transaction. Note that the JTA transaction
may rollback in a background thread (e.g., as a result of transaction timeout), in which case the provider should
arrange for the managed entities to be detached from the persistence context but not concurrently while the
application is in an EntityManager invocation.

* When the provider throws an exception defined to cause transaction rollback, the provider must mark the
transaction for rollback if the persistence context is of type SynchronizationType.SYNCHRONIZED or has otherwise been

174

joined to the transaction.

* When EntityManager.close is invoked, the provider should release all resources that it may have allocated after any
outstanding transactions involving the entity manager have completed. If the entity manager was already in a
closed state, the provider must throw the I1legalStateException.

* When EntityManager.clear is invoked, the provider must detach all managed entities.

7.11. PersistenceUnitUtil Interface

The PersistencelUnitUtil interface found in Section B.20 declares utility methods that can be invoked on entities
associated with the persistence unit. The behavior is undefined if these methods are invoked on an entity instance that
is not associated with the persistence unit from whose entity manager factory this interface has been obtained.

7.12. SchemaManager Interface

The SchemaManager interface may be found in Section B.16. An instance of SchemaManager may be obtained by calling the
getSchemaManager () method of EntityManagerFactory.

The SchemaManager interface allows programmatic control over schema generation and cleanup at runtime. This differs
from the functionality described in Section 9.4 which allows schema generation before or during the application
deployment and initialization process. Similarly, the generateSchema method described in Section 9.2.1 is intended to be
called before the EntityManagerFactory is available. By contrast, an instance of SchemaManager is only available after an
EntityManagerFactory has already been created.

For example, SchemaManager is especially useful in tests.

The methods of SchemaManager correspond to values of the property jakarta.persistence.schema-generation.scripts.action.
The methods create(), drop(), and validate() correspond to the actions create, drop, and validate. The method truncate()
has no corresponding action.

Thus, the behavior of the SchemaManager may be controlled via the properties defined in Section 9.4 and Section 8.2.1.11.

[1] Note that the use of JTA is not required to be supported in application client containers.
[2] It may also be used internally by the Jakarta EE container. See Section 7.10.

[3] This may be the case when using multiple databases, since in a typical configuration a single entity manager only
communicates with a single database. There is only one entity manager factory per persistence unit, however.

[4] Specifically, when one of the methods of the EntityManager interface is invoked.

[5] Note that this applies to a transaction-scoped persistence context of type SynchronizationType.UNSYNCHRONIZED
that has not been joined to the transaction as well.

[6] Entity manager instances obtained from different entity manager factories never share the same persistence
context.

[7] It is not required that these contracts be used when a third-party persistence provider is not used: the container
might use these same APIs or its might use its own internal APIs.

[8] The container may choose to pool EntityManagers: it instead of creating and closing in each case, it may acquire one
from its pool and call clear() on it.

175

Chapter 8. Entity Packaging

This chapter describes the packaging of persistence units.

8.1. Persistence Unit

A persistence unit is a logical grouping that includes:

* an entity manager factory and its entity managers, together with their configuration information,

« the set of managed classes included in the persistence unit and managed by entity managers created by the entity
manager factory, and

* mapping metadata (in the form of metadata annotations and/or XML metadata) specifying the mapping of these
classes to the database.

8.2. Persistence Unit Packaging

Within Jakarta EE environments, any EJB-JAR, WAR, EAR, or application client JAR can define a persistence unit. Any
number of persistence units may be defined within these scopes.

A persistence unit may be packaged:

» within one or more jar files contained within a WAR or EAR,
« as a set of classes within an EJB-JAR file or in the WAR classes directory, or

* as a combination of these, as defined below.

A persistence unit is defined by a persistence.xml file. The jar file or directory whose META-INF directory contains the
persistence.xml file is termed the root of the persistence unit. In Jakarta EE environments, the root of a persistence unit
must be either:

* an EJB-JAR file,
the WEB-INF/classes directory of a WAR file,
* ajar file in the WEB-INF/1ib directory of a WAR file,

¢ ajar file in the library directory or an EAR, or

* an application client JAR file.

It is not required that an EJB-JAR or WAR file containing a persistence unit be packaged in an EAR unless the
persistence unit contains extra persistence classes in addition to those contained within the EJB-JAR or WAR. See
Section 8.2.1.8.

o Java Persistence 1.0 supported the use of a jar file in the root of the EAR as the root of a persistence
unit. This use is no longer supported. Portable applications should use the EAR library directory for this
case instead. See [6].

A persistence unit must have a name. The name of the persistence unit must be unique within a given EJB-JAR file,
within a given WAR file, within a given application client JAR, or within an EAR. See Section 8.2.2.
The persistence.xml file may be used to define more than one persistence unit within the same scope.

All persistence classes defined at the level of the Jakarta EE EAR must be accessible to other Jakarta EE components in
the application—that is, to all components loaded by the application classloader—such that if the same entity class is
referenced by two different Jakarta EE components (which may be using different persistence units), the referenced
class is the same identical class.

176

In Java SE environments, the metadata mapping files, jar files, and classes described in the following sections can be
used. To insure the portability of a Java SE application, it is necessary to explicitly list the managed persistence classes
included in the persistence unit using the class element of the persistence.xml file. See Section 8.2.1.8.

8.2.1. persistence.xml file

A persistence.xml file defines a persistence unit. The persistence.xml file is located in the META-INF directory of the root of
the persistence unit. It may be used to specify:

* managed persistence classes included in the persistence unit,

object/relational mapping information for those classes,

« scripts for use in schema generation and bulk loading of data, and

other configuration information for the persistence unit and for the entity managers and entity manager factory of
the persistence unit.

This information may be defined by containment or by reference, as described below.
The object/relational mapping information can take the form of:

* annotations on the managed persistence classes included in the persistence unit,
« an orm.xml file contained in the META-INF directory of the root of the persistence unit,
» one or more XML files accessible on the classpath and referenced from the persistence.xml file, or

* any combination of the previous options.
The managed persistence classes may be:

 contained within the root of the persistence unit,

« specified by reference—that is, by naming the classes, class archives, or XML mapping files (which in turn reference
classes) that are accessible on the application classpath, or

* specified by any combination of these means.
See Section 8.2.1.8.

The root element of the persistence.xml file is the persistence element. The persistence element consists of one or more
persistence-unit elements.

The persistence-unit element consists of the name and transaction-type attributes and the following sub-elements:
description, provider, jta-data-source, non-jta-data-source, mapping-file, jar-file, class, exclude-unlisted-classes, shared-

cache-mode, validation-mode, and properties.

The name attribute is required; the other attributes and elements are optional. Their semantics are described in the
following subsections.

Examples:

<persistence>
<persistence-unit name="OrderManagement">
<description>
This unit manages orders and customers.
It does not rely on any vendor-specific features and can
therefore be deployed to any persistence provider.
</description>
<jta-data-source>jdbc/MyOrderDB</jta-data-source>
<mapping-file>ormap.xml</mapping-file>
<jar-file>MyOrderApp.jar</jar-file>
<class>com.widgets.Order</class>
<class>com.widgets.Customer</class>

177

</persistence-unit>
</persistence>

<persistence>
<persistence-unit name="OrderManagement2">
<description>
This unit manages inventory for auto parts.
It depends on features provided by the
com.acme.persistence implementation.
</description>
<provider>com.acme.AcmePersistence</provider>
<jta-data-source>jdbc/MyPartDB</jta-data-source>
<mapping-file>ormap2.xml</mapping-file>
<jar-file>MyPartsApp.jar</jar-file>
<properties>
<property name="com.acme.persistence.sql-logging" value="on"/>
</properties>
</persistence-unit>
</persistence>

8.2.1.1. name

The name attribute defines the name of the persistence unit. This name is used to identify the persistence unit referred
to by a PersistenceContext or PersistencelUnit annotation and in the programmatic API for creating an entity manager
factory.

8.2.1.2. transaction-type

The transaction-type attribute specifies whether entity managers created by the entity manager factory for the
persistence unit are JTA entity managers or resource-local entity managers. The value of this element must be JTA or
RESOURCE _LOCAL

* JTAmeans that a JTA data source is provided—either as specified by the jta-data-source element, or by the container.

* In a Jakarta EE environment, RESOURCE_LOCAL usually means that a non-JTA datasource is provided.
Configuration of datasources is described below in Section 8.2.1.7.
If the transaction-type is not explicitly specified, its value is defaulted:

¢ in a Jakarta EE environment, the default is JTA, but

* in a Java SE environment, the default is RESOURCE_LOCAL.

8.2.1.3. description

The description element provides optional descriptive information about the persistence unit.

8.2.1.4. provider

The provider element specifies the name of a provider-specific implementation of
jakarta.persistence.spi.PersistenceProvider. The provider element is optional, but should be explicitly specified if the
application depends on the use of a particular persistence provider.

8.2.1.5. qualifier

The qualifier element specifies the fully-qualified class name of an annotation annotated jakarta.inject.Qualifier. This
qualifier annotation may be used to disambiguate the persistence unit for the purposes of dependency injection.

178

8.2.1.6. scope

The scope element specifies the fully-qualified class name of an annotation annotated jakarta.inject.Scope or
jakarta.enterprise.context.NormalScope. This scope annotation may be used to determine the scope of a persistence
context for the purposes of dependency injection.

8.2.1.7. jta-data-source, non-jta-data-source

In Jakarta EE environments:

¢ the jta-data-source element specifies the JNDI name of a JTA data source, and/or

o the non-jta-data-source element specifies the JNDI name of a non-JTA data source.

The specified data source is used by the persistence provider to obtain database connections. If neither element is
specified, the deployer must specify a data source at deployment, or a default data source must be provided by the
container.

In Java SE environments, these elements may be used, or the data source information may be specified by other means,

depending upon the requirements of the provider.

8.2.1.8. mapping-file, jar-file, class, exclude-unlisted-classes

The following classes must be implicitly or explicitly denoted as managed persistence classes to be included within a
persistence unit:

* entity classes;

embeddable classes;
* mapped superclasses;

e converter classes.

The set of managed persistence classes managed by a persistence unit is specified using one or more of the
following:™

* annotated managed persistence classes contained in the root of the persistence unit (unless the exclude-unlisted-
classes element is specified);

* one or more object/relational mapping XML files;
* one or more JAR files to be searched for classes;

 an explicit list of classes.

The set of entities managed by the persistence unit is the union of these sources, with the mapping metadata
annotations (or annotation defaults) for any given class being overridden by the XML mapping information file if there
are both annotations and XML mappings for that class. The minimum portable level of overriding is at the level of the
persistent field or property.

The classes and/or jars that named as part of a persistence unit must be on the classpath; referencing them from the
persistence.xml file does not cause them to be placed on the classpath.

All classes must be on the classpath to ensure that entity managers from different persistence units that map the same
class will be accessing the same identical class.

Annotated Classes in the Root of the Persistence Unit

By default, in the Java EE environment, the root of the persistence unit is searched for annotated managed persistence

179

classes—classes with an Entity, Embeddable, MappedSuperclass, or Converter annotation—and mapping metadata
annotations found on these classes are processed. Where mapping annotations are missing, the classes are mapped
using mapping annotation defaults.

This behavior is disabled if the exclude-unlisted-classes of the persistence.xml file is specified as true. In this case, an
annotated persistence class located in the root of the persistence unit is not included in the persistence unit unless it is
explicitly listed in a class element of the persistence.xml file or in a mapping file.

In the Java SE environment, this behavior is not required. Portable Java SE applications should explicitly list each
persistence class in a class element of the persistence.xml file or in a mapping file. The exclude-unlisted-classes element
is not intended for use in Java SE environments.

Object/relational Mapping Files

An object/relational mapping XML file contains mapping information for the classes it lists.

* An object/relational mapping XML file named orm.xml may be located in the META-INF directory in the root of the
persistence unit or in the META-INF directory of any jar file referenced by the persistence.xml.

* Alternatively, or in addition, one or more mapping files may be referenced by the mapping-file elements of the
persistence-unit element. These mapping files may be present anywhere on the class path.

An orm.xml mapping file or other mapping file is loaded as a resource by the persistence provider. If a mapping file is
specified, the classes and mapping information listed in the mapping file are used as described in Chapter 12.

If multiple mapping files are specified (possibly including one or more orm.xml files), the resulting mappings are
obtained by combining the mappings from all the files. If multiple mapping files referenced within a single persistence
unit (including any orm.xml file) contain overlapping mapping information for a given class, the result is undefined.
That is, the object/relational mapping information contained in any given mapping file referenced within the
persistence unit must be disjoint at the class level from object/relational mapping information contained in other
mapping files referenced within the persistence unit.

Jar Files

One or more JAR files may be specified using jar-file elements instead of, or in addition to, the mapping files listed by
the mapping-file elements. These JAR files are searched for managed persistence classes and any mapping metadata
annotations found on them are processed. Where mapping annotations are missing, the classes are mapped using the
mapping annotation defaults defined by this specification. Such JAR files are specified relative to the directory or jar
file that contains the root of the persistence unit."”’

The following examples illustrate the use of the jar-file element to reference additional persistence classes. These
examples make use of the convention that a jar file with a name terminating in “PUnit” contains the persistence.xml file
and that a jar file with a name terminating in “Entities” contains additional persistence classes.

Example 1:

app.ear
lib/earEntities.jar
earRootPUnit.jar (with META-INF/persistence.xml)

persistence.xml contains:

<jar-file>lib/earEntities.jar</jar-file>

Example 2:

180

app.ear
lib/earEntities.jar
lib/earLibPUnit.jar (with META-INF/persistence.xml)

persistence.xml contains:

<jar-file>earEntities.jar</jar-file>

Example 3:

app.ear
lib/earEntities.jar
ejbjar.jar (with META-INF/persistence.xml)

persistence.xml contains:

<jar-file>lib/earEntities.jar</jar-file>

Example 4:

app.ear
war1.war
WEB-INF/1lib/warEntities.jar
WEB-INF/1lib/warPUnit.jar (with META-INF/persistence.xml)

persistence.xml contains:

<jar-file>warEntities.jar</jar-file>

Example 5:

app.ear
war2.war
WEB-INF/1ib/warEntities.jar
WEB-INF/classes/META-INF/persistence.xml

persistence.xml contains:

<jar-file>lib/warEntities.jar</jar-file>

Example 6:

app.ear
lib/earEntities.jar
war2.war
WEB-INF/classes/META-INF/persistence.xml

persistence.xml contains:

<jar-file>../../lib/earEntities.jar</jar-file>

Example 7:

app.ear
lib/earEntities.jar
warT.war
WEB-INF/1ib/warPUnit.jar (with META-INF/persistence.xml)

181

persistence.xml contains:

<jar-file>../../../lib/earEntities.jar</jar-file>

List of Managed Classes

A list of named managed persistence classes—entity classes, embeddable classes, mapped superclasses, and converter
classes—may be specified instead of, or in addition to, the listed JAR files and mapping files. Any mapping metadata
annotations found on these classes are processed. Where mapping annotations are missing, the classes are mapped
using the mapping annotation defaults. The class element is used to list a managed persistence class.

In Java SE environments, an explicit list of all managed persistence class names must be specified to insure portability.
Portable Java SE applications should not rely on the other mechanisms described here to determine the managed
persistence classes of a persistence unit. In Java SE environments, a persistence provider may require that the set of
entity classes and other classes to be managed is fully enumerated in each persistence.xml file.

8.2.1.9. shared-cache-mode

The shared-cache-mode element determines whether second-level caching is in effect for the persistence unit. See Section
3.10.1.

8.2.1.10. validation-mode

The validation-mode element determines whether automatic lifecycle event time validation is in effect. See Section
3.7.1.1.

8.2.1.11. properties

The properties element is used to specify both standard and vendor-specific properties and hints that apply to the
persistence unit and its entity manager factory configuration.

The following properties and hints defined by this specification are intended for use in both Jakarta EE and Java SE
environments:
jakarta.persistence.lock.timeout

The pessimistic lock timeout in milliseconds. This is a hint only.

jakarta.persistence.query.timeout

The query timeout in milliseconds. This is a hint only.

jakarta.persistence.validation.group.pre-persist
Bean Validation groups that are targeted for validation upon the pre-persist event (overrides the default
behavior).

jakarta.persistence.validation.group.pre-update
Bean Validation groups that are targeted for validation upon the pre-update event (overrides the default
behavior).

jakarta.persistence.validation.group.pre-remove

Bean Validation groups that are targeted for validation upon the pre-remove event (overrides the default
behavior).

182

The following properties defined by this specification are intended for use in Java SE environments.

jakarta.persistence.jdbc.driver

Fully qualified name of the JDBC driver class.

jakarta.persistence.jdbc.url

Driver-specific connection URL.

jakarta.persistence.jdbc.user

Username for database connection authentication.

jakarta.persistence.jdbc.password

Password for database connection authentication

Scripts for use in schema generation may be specified using the jakarta.persistence.schema-generation.create-script-
source and jakarta.persistence.schema-generation.drop-script-source properties. A script to specify SQL for the bulk
loading of data may be specified by the jakarta.persistence.sql-load-script-source property. These properties are
intended for use in both Jakarta EE and Java SE environments:

jakarta.persistence.schema-generation.create-script-source

Name of a script packaged as part of the persistence application or a string identifying a file URL that designates
a script.

jakarta.persistence.schema-generation.drop-script-source

Name of a script packaged as part of the persistence application or a string identifying a file URL that designates
a script.

jakarta.persistence.sql-load-script-source

Name of a script packaged as part of the persistence unit or a string identifying a file URL that designates a
script.

When scripts are packaged as part of the persistence application, these properties must specify locations relative to the
root of the persistence unit. When scripts are provided externally (or when schema generation is configured to write
script files, as described below), strings identifying file URLs must be specified. In Jakarta EE environments, such file
URLs must be absolute paths. In Jakarta EE environments, all source and target file locations must be accessible to the
application server deploying the persistence unit.

In general, it is expected that schema generation will be initiated by means of the APIs described in Section 9.4.
However, schema generation actions may also be specified by means of the following properties used in the

persistence.xml file.

jakarta.persistence.schema-generation.database.action

The jakarta.persistence.schema-generation.database.action property specifies the action to be taken by the
persistence provider with regard to the database artifacts. The values for this property are none, create, drop-and-
create, drop, validate. If this property is not specified, it is assumed that schema generation is not needed or will
be initiated by other means, and, by default, no schema generation actions will be taken on the database. (See
Section 9.4.)

jakarta.persistence.schema-generation.scripts.action

The jakarta.persistence.schema-generation.scripts.action property specifies which scripts are to be generated by
the persistence provider. The values for this property are none, create, drop-and-create, drop. A script will only be
generated if the script target is specified. If this property is not specified, it is assumed that script generation is

183

not needed or will be initiated by other means, and, by default, no scripts will be generated. (See Section 9.4.)

jakarta.persistence.schema-generation.create-source

The jakarta.persistence.schema-generation.create-source property specifies whether the creation of database
artifacts is to occur on the basis of the object/relational mapping metadata, DDL script, or a combination of the
two. The values for this property are metadata, script, metadata-then-script, script-then-metadata. If this property is
not specified, and a script is specified by the jakarta.persistence.schema-generation.create-script-source property,
the script (only) will be used for schema generation; otherwise if this property is not specified, schema
generation will occur on the basis of the object/relational mapping metadata (only). The metadata-then-script and
script-then-metadata values specify that a combination of metadata and script is to be used and the order in
which this use is to occur. If either of these values is specified and the resulting database actions are not disjoint,
the results are undefined and schema generation may fail.

jakarta.persistence.schema-generation.drop-source

The jakarta.persistence.schema-generation.drop-source property specifies whether the dropping of database
artifacts is to occur on the basis of the object/relational mapping metadata, DDL script, or a combination of the
two. The values for this property are metadata, script, metadata-then-script, script-then-metadata. If this property is
not specified, and a script is specified by the jakarta.persistence.schema-generation.drop-script-source property,
the script (only) will be used for the dropping of database artifacts; otherwise if this property is not specified,
the dropping of database artifacts will occur on the basis of the object/relational mapping metadata (only). The
metadata-then-script and script-then-metadata values specify that a combination of metadata and script is to be
used and the order in which this use is to occur. If either of these values is specified and the resulting database
actions are not disjoint, the results are undefined and the dropping of database artifacts may fail.

jakarta.persistence.schema-generation.scripts.create-target,
jakarta.persistence.schema-generation.scripts.drop-target

If scripts are to be generated, the target locations for the writing of these scripts must be specified. These targets
are specified as strings corresponding to file URLs.

If a persistence provider does not recognize a property (other than a property defined by this specification), the
provider must ignore it.

Vendors should define properties in vendor-specific namespaces, (e.g com.acme.persistence.logging). The namespace
jakarta.persistence is reserved for use by this specification, and must not be used to define vendor-specific properties.

The following are sample contents of a persistence.xml file.

Example 1:

<persistence-unit name="OrderManagement"/>

A persistence unit named OrderManagement is created.

Any annotated managed persistence classes found in the root of the persistence unit are added to the list of managed
persistence classes. If a META-INF/orm.xml file exists, any classes referenced by it and mapping information contained in it
are used as specified above. Because no provider is specified, the persistence unit is assumed to be portable across
providers. Because the transaction type is not specified, JTA is assumed for Jakarta EE environments. The container
must provide the data source (it may be specified at application deployment, for example). In Java SE environments,
the data source may be specified by other means and a transaction type of RESOURCE_LOCAL is assumed.

Example 2:

<persistence-unit name="OrderManagement2">

184

<mapping-file>mappings.xml</mapping-file>
</persistence-unit>

A persistence unit named OrderManagement? is created. Any annotated managed persistence classes found in the root of
the persistence unit are added to the list of managed persistence classes. The mappings.xml resource exists on the
classpath and any classes and mapping information contained in it are used as specified above. If a META-INF/orm.xml file
exists, any classes and mapping information contained in it are used as well. The transaction type, data source, and
provider are as described above.

Example 3:

<persistence-unit name="OrderManagement3">
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</persistence-unit>

A persistence unit named OrderManagement3 is created. Any annotated managed persistence classes found in the root of
the persistence unit are added to the list of managed persistence classes. If a META-INF/orm.xml file exists, any classes and
mapping information contained in it are used as specified above. The order.jar and order-supplemental.jar files are
searched for managed persistence classes and any annotated managed persistence classes found in them and/or any
classes specified in the orm.xml files of these jar files are added. The transaction-type, data source and provider are as
described above.

Example 4:

<persistence-unit name="OrderManagement4" transaction-type=RESOURCE_LOCAL>
<non-jta-data-source>java:app/jdbc/MyDB</non-jta-data-source>
<mapping-file>order-mappings.xml</mapping-file>
<class>com.acme.Order</class>
<class>com.acme.Customer</class>
<class>com.acme.Item</class>
<exclude-unlisted-classes/>

</persistence-unit>

A persistence unit named OrderManagement4 is created. The file order-mappings.xml is read as a resource and any classes
referenced by it and mapping information contained in it are used". The annotated Order, Customer and Item classes are
loaded and are added. No (other) classes contained in the root of the persistence unit are added to the list of managed
persistence classes. The persistence unit assumed to be portable across providers. A entity manager factory supplying
resource-local entity managers will be created. The data source java:app/jdbc/MyDB must be used.

Example 5:

<persistence-unit name="OrderManagement5">
<provider>com.acme.AcmePersistence</provider>
<mapping-file>order1.xml</mapping-file>
<mapping-file>order2.xml</mapping-file>
<jar-file>order.jar</jar-file>
<jar-file>order-supplemental.jar</jar-file>
</persistence-unit>

A persistence unit named OrderManagement5 is created. Any annotated managed persistence classes found in the root of
the persistence unit are added to the list of managed classes. The order1.xml and order2.xml files are read as resources
and any classes referenced by them and mapping information contained in them are also used as specified above. The
order.jar is a jar file on the classpath containing another persistence unit, while order-supplemental.jar is just a library
of classes. Both of these jar files are searched for annotated managed persistence classes and any annotated managed
persistence classes found in them and any classes specified in the orm.xml files (if any) of these jar files are added. The

185

provider com.acme.AcmePersistence must be used.

o Note that the persistence.xml file contained in order.jar is not used to augment the persistence unit
OrderManagement5 with the classes of the persistence unit whose root is order. jar.

8.2.2. Persistence Unit Scope

An EJB-JAR, WAR, application client JAR, or EAR can define a persistence unit. When referencing a persistence unit
using the unitName annotation element or persistence-unit-name deployment descriptor element, the visibility scope of
the persistence unit is determined by its point of definition:

* A persistence unit defined at the level of an EJB-JAR, WAR, or application client JAR is scoped to that EJB-JAR, WAR,
or application JAR respectively and is visible to the components defined in that jar or WAR.

* A persistence unit defined at the level of an EAR is generally visible to all components in the application. However, if
a persistence unit of the same name is defined by an EJB-JAR, WAR, or application JAR file within the EAR, the
persistence unit of that name defined at EAR level will not be visible to the components defined by that EJB-JAR,
WAR, or application JAR file, unless the persistence unit reference uses the persistence unit name # syntax to specify
a path name to disambiguate the reference.

The # syntax may be used with both the unitName annotation element or persistence-unit-name deployment descriptor
element to reference a persistence unit defined at EAR level.

When the # syntax is used, the path name is interpreted relative to the referencing application component jar file. For
example, the syntax ../1ib/persistencelUnitRoot.jar#fmyPersistencelnit refers to a persistence unit with:

* name myPersistenceUnit, as specified in the name element of the persistence.xml file, and

 root given by the relative path name ../1ib/persistencelnitRoot. jar.

8.3. persistence.xml Schema

This section provides the XML schema for the persistence.xml file.

<?xml version="1.0" encoding="UTF-8"7?>

<!-- persistence.xml schema -->

<xsd:schema targetNamespace="https://jakarta.ee/xml/ns/persistence”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:persistence="https://jakarta.ee/xml/ns/persistence”
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="3.2">

<xsd:annotation>
<xsd:documentation><![CDATA[

This is the XML Schema for the persistence configuration file.
The file must be named "META-INF/persistence.xml" in the

persistence archive.

Persistence configuration files must indicate
the persistence schema by using the persistence namespace:

https://jakarta.ee/xml/ns/persistence

and indicate the version of the schema by
using the version element as shown below:

<persistence xmlns="https://jakarta.ee/xml/ns/persistence"

186

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/persistence

https://jakarta.ee/xml/ns/persistence/persistence_3_2.xsd"
version="3.2">

</persistence>

11></xsd:documentation>
</xsd:annotation>

<xsd:simpleType name="versionType">
<xsd:restriction base="xsd:token">
<xsd:pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</xsd:simpleType>

<l HkE -->

<xsd:element name="persistence">
<xsd:complexType>
<xsd:sequence>

<l-- -->

<xsd:element name="persistence-unit"
minOccurs="1" maxOccurs="unbounded">
<xsd:complexType>
<xsd:annotation>
<xsd:documentation>

Configuration of a persistence unit.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<l-- -=>

<xsd:element name="description" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

Description of this persistence unit.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="provider" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

Provider class that supplies EntityManagers for this
persistence unit.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<I-- -->

<xsd:element name="qualifier" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">

187

<xsd:annotation>
<xsd:documentation>

Qualifier annotation class used for dependency injection.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="scope" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

Scope annotation class used for dependency injection.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<I-- -->

<xsd:element name="jta-data-source" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

The container-specific name of the JTA datasource to use.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<I-- hdE -S>

<xsd:element name="non-jta-data-source" type="xsd:string"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

The container-specific name of a non-JTA datasource to use.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<lo- TN

<xsd:element name="mapping-file" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>

File containing mapping information. Loaded as a resource
by the persistence provider.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<I-- -->

<xsd:element name="jar-file" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>

188

<xsd:documentation>
Jar file that is to be scanned for managed classes.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<I-- -->

<xsd:element name="class" type="xsd:string"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>

Managed class to be included in the persistence unit and
to scan for annotations. It should be annotated
with either @Entity, @Embeddable or @MappedSuperclass.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<I-- -->

<xsd:element name="exclude-unlisted-classes" type="xsd:boolean"
default="true" minOccurs="0">
<xsd:annotation>
<xsd:documentation>

When set to true then only listed classes and jars will
be scanned for persistent classes, otherwise the
enclosing jar or directory will also be scanned.

Not applicable to Java SE persistence units.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<l-- kkkk sy

<xsd:element name="shared-cache-mode"
type="persistence:persistence-unit-caching-type"
minOccurs="0">
<xsd:annotation>
<xsd:documentation>

Defines whether caching is enabled for the

persistence unit if caching is supported by the
persistence provider. When set to ALL, all entities
will be cached. When set to NONE, no entities will

be cached. When set to ENABLE_SELECTIVE, only entities
specified as cacheable will be cached. When set to
DISABLE_SELECTIVE, entities specified as not cacheable
will not be cached. When not specified or when set to
UNSPECIFIED, provider defaults may apply.

</xsd:documentation>
</xsd:annotation>
</xsd:element>

<I-- -->

<xsd:element name="validation-mode"

type="persistence:persistence-unit-validation-mode-type"

minOccurs="0">
<xsd:annotation>

189

<xsd:documentation>
The validation mode to be used for the persistence unit.
</xsd:documentation>

</xsd:annotation>
</xsd:element>

<l-- -->

<xsd:element name="properties" minOccurs="0">
<xsd:annotation>
<xsd:documentation>

A list of standard and vendor-specific properties
and hints.

</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="property"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
A name-value pair.
</xsd:documentation>
</xsd:annotation>
<xsd:complexType>
<xsd:attribute name="name" type="xsd:string"
use="required"/>
<xsd:attribute name="value" type="xsd:string"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:any namespace="##iother" processContents="1ax"
minOccurs="0" maxOccurs="unbounded">
<xsd:annotation>
<xsd:documentation>
An extension point for integration related configuration, e.g. cdi:
<l--
<persistence-unit name="my-unit" xmlns:cdi="https://jakarta.ee/xml/ns/persistence-cdi">

<cdi:scope>com.example.jpa.ACustomScope</cdi:scope>
<cdi:qualifier>com.example.jpa.CustomQualifier</cdi:qualifier>

</persistence-unit>

-->

</xsd:documentation>
</xsd:annotation>
</xsd:any>
</xsd:sequence>

<l-- -=>
<xsd:attribute name="name" type="xsd:string" use="required">
<xsd:annotation>
<xsd:documentation>

Name used in code to reference this persistence unit.

</xsd:documentation>
</xsd:annotation>

190

</xsd:attribute>

<l-- -->

<xsd:attribute name="transaction-type"
type="persistence:persistence-unit-transaction-type">
<xsd:annotation>
<xsd:documentation>

Type of transactions used by EntityManagers from this
persistence unit.

</xsd:documentation>
</xsd:annotation>
</xsd:attribute>

</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="version" type="persistence:versionType"
fixed="3.2" use="required"/>
</xsd:complexType>
</xsd:element>

<l-- -->

<xsd:simpleType name="persistence-unit-transaction-type">
<xsd:annotation>
<xsd:documentation>

public enum PersistenceUnitTransactionType {JTA, RESOURCE_LOCAL};

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="JTA"/>
<xsd:enumeration value="RESOURCE_LOCAL"/>
</xsd:restriction>
</xsd:simpleType>

<l-- -->

<xsd:simpleType name="persistence-unit-caching-type">
<xsd:annotation>
<xsd:documentation>

public enum SharedCacheMode { ALL, NONE, ENABLE_SELECTIVE, DISABLE_SELECTIVE, UNSPECIFIED};

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="ALL"/>
<xsd:enumeration value="NONE"/>
<xsd:enumeration value="ENABLE_SELECTIVE"/>
<xsd:enumeration value="DISABLE_SELECTIVE"/>
<xsd:enumeration value="UNSPECIFIED"/>

</xsd:restriction>

</xsd:simpleType>

<l-- >
<xsd:simpleType name="persistence-unit-validation-mode-type">
<xsd:annotation>

<xsd:documentation>

public enum ValidationMode { AUTO, CALLBACK, NONE};

191

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="AUTO"/>
<xsd:enumeration value="CALLBACK"/>
<xsd:enumeration value="NONE"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

[1] The root of the persistence unit is the WEB-INF/classes directory; the persistence.xml file is therefore contained in the
WEB-INF/classes/META-INF directory.

[2] Note that an given class may be used in more than one persistence unit.
[3] Persistence providers are encouraged to support this syntax for use in Java SE environments.

[4] Note that in this example a META-INF/orm.xml file is assumed not to exist.

192

Chapter 9. Container and Provider Contracts for Deployment and Bootstrapping

This chapter defines requirements on the Jakarta EE container and on the persistence provider for deployment and
bootstrapping.

9.1. Jakarta EE Deployment

Each persistence unit deployed into a Jakarta EE container consists of a single persistence.xml file, any number of
mapping files, and any number of class files.

At deployment time the container is responsible for scanning the locations specified in Section 8.2 and discovering the
persistence.xml files and processing them.

When the container finds a persistence.xml file, it must process the persistence unit definitions that it contains. The
container must validate the persistence.xml file against the persistence_3_2.xsd, persistence_3_0.xsd or persistence_2_2.xsd
schema in accordance with the version specified by the persistence.xml file and report any validation errors. Provider
or data source information not specified in the persistence.xml file must be provided at deployment time or defaulted
by the container. The container may optionally add any container-specific properties to be passed to the provider when
creating the entity manager factory for the persistence unit.

Once the container has read the persistence metadata, it determines the jakarta.persistence.spi.PersistenceProvider
implementation class for each deployed named persistence unit. The container then creates an instance of the
PersistenceProvider implementation class for each deployed named persistence unit and invokes the
createContainerEntityManagerFactory method on that instance.

* The container must implement the PersistenceUnitInfo interface described in Section 9.6 and pass the metadata—in
the form of a PersistenceUnitInfo instance—to the persistence provider as part of this call.

 If a Bean Validation provider exists in the container environment and the validation-mode NONE is not specified, a
ValidatorFactory instance must be made available by the container. The container is responsible for passing this
ValidatorFactory instance via the map that is passed as an argument to the createContainerEntityManagerFactory call.
The map key used must be the standard property name jakarta.persistence.validation.factory.

 If CDI is enabled, a BeanManager instance must be made available by the container. The container is responsible for

passing this BeanManager instance via the map that is passed as an argument to the createContainerEntityManagerFactory
call. The map key used must be the standard property name jakarta.persistence.bean.manager.

The EntityManagerFactory instance obtained as a result will be used by the container to create container-managed entity
managers. Only one EntityManagerFactory is permitted to be created for each deployed persistence unit configuration.
Any number of EntityManager instances may be created from a given factory.

In a Jakarta EE environment, the classes of the persistence unit should not be loaded by the application class loader or
any of its parent class loaders until after the entity manager factory for the persistence unit has been created.

When a persistence unit is redeployed, the container should call the close method on the previous EntityManagerFactory
instance and call the createContainerEntityManagerFactory method again, with the required PersistenceUnitInfo metadata,
to achieve the redeployment.

9.2. Bootstrapping in Java SE Environments

In Java SE environments, the Persistence.createEntityManagerFactory method is used by the application to create an
entity manager factory'™.

A persistence provider implementation running in a Java SE environment should also act as a service provider by
supplying a service provider configuration file as defined by the Java SE platform.

193

The provider configuration file serves to export the provider implementation class to the Persistence bootstrap class,
positioning the provider as a candidate for backing named persistence units. The provider supplies the provider
configuration file by creating a text file named jakarta.persistence.spi.PersistenceProvider and placing it in the META-
INF/services directory of one of its JAR files. The contents of the file should be the name of the provider implementation
class of the jakarta.persistence.spi.PersistenceProvider interface.

Example:

A persistence vendor called ACME persistence products ships a JAR called acme. jar that contains its persistence
provider implementation. The JAR includes the provider configuration file.

acme.jar
META-INF/services/jakarta.persistence.spi.PersistenceProvider
com.acme.PersistenceProvider

The contents of the META-INF/services/jakarta.persistence.spi.PersistenceProvider file is nothing more than the name of
the implementation class: com.acme.PersistenceProvider.

Persistence provider jars may be installed or made available in the same ways as other service providers, e.g. as
extensions or added to the application classpath.

The Persistence bootstrap class must locate all of the persistence providers using the PersistenceProviderResolver
mechanism described in Section 9.3 and call createEntityManagerFactory on them in turn until an appropriate backing
provider returns an EntityManagerFactory instance. A provider may deem itself as appropriate for the persistence unit if
any of the following are true:

« Its implementation class has been specified in the provider element for that persistence unit in the persistence.xml
file and has not been overridden by a different jakarta.persistence.provider property value included in the Map
passed to the createEntityManagerFactory method.

o The jakarta.persistence.provider property was included in the Map passed to createEntityManagerFactory and the
value of the property is the provider’s implementation class.

* No provider was specified for the persistence unit in either the persistence.xml or the property map.

If a provider does not qualify as the provider for the named persistence unit, it must return null when
createEntityManagerFactory is invoked on it.

9.2.1. Schema Generation

In Java SE environments, the Persistence.generateSchema method may be used by the application to cause schema
generation to occur as a separate phase from entity manager factory creation.

In this case, the Persistence bootstrap class must locate all of the persistence providers using the
PersistenceProviderResolver mechanism described in Section 9.3 and call generateSchema on them in turn until an
appropriate backing provider returns true. A provider may deem itself as appropriate for the persistence unit if any of
the following are true:

* Its implementation class has been specified in the provider element for that persistence unit in the persistence.xml
file and has not been overridden by a different jakarta.persistence.provider property value included in the Map
passed to the generateSchema method.

* The jakarta.persistence.provider property was included in the Map passed to generateSchema and the value of the
property is the provider’s implementation class.

* No provider was specified for the persistence unit in either the persistence.xml or the property map.

194

If a provider does not qualify as the provider for the named persistence unit, it must return false when generateSchema is
invoked on it.

9.3. Determining the Available Persistence Providers

The PersistenceProviderResolver and PersistenceProviderResolverHolder mechanism supports the dynamic discovery of
persistence providers.”

o The PersistenceProviderResolver instance is responsible for returning the list of providers available in the
environment.

e The PersistenceProviderResolverHolder class holds the PersistenceProviderResolver instance that is in use.
These interfaces may be found in Appendix E.

The implementation of PersistenceProviderResolverHolder must be threadsafe, but no guarantee is made against multiple
threads setting the resolver.

The container is allowed to implement and set a specific PersistenceProviderResolver provided that it respects the
PersistenceProviderResolver contract. The PersistenceProviderResolver instance to be used is set by the container using the

PersistenceProviderResolverHolder.setPersistenceProviderResolver method.”

If no PersistenceProviderResolver is set, the PersistenceProviderResolverHolder must return a PersistenceProviderResolver
that returns the providers whose persistence provider jars have been installed or made available as service providers
or extensions. This default PersistenceProviderResolver instance does not guarantee the order in which persistence
providers are returned.

A PersistenceProviderResolver must be threadsafe.

The PersistenceProviderResolver.getPersistenceProviders() method must be used to determine the list of available
persistence providers.

The results of calling the PersistenceProviderResolverHolder.getPersistenceProviderResolver and the
PersistenceProviderResolver.getPersistenceProviders methods must not be cached. In particular, the following methods
must use the PersistenceProviderResolver instance returned by the
PersistenceProviderResolverHolder.getPersistenceProviderResolver method to determine the list of available providers:

* Persistence.createEntityManagerFactory(String)
* Persistence.createEntityManagerFactory(String, Map)
e Persistenceltil.isLoaded(0Object)

e PersistenceUtil.isLoaded(Object, String)

These methods must not cache the list of providers and must not cache the PersistenceProviderResolver instance.

o Note that the PersistenceProviderResolver.getPersistenceProviders() method can potentially be called
many times. It is therefore recommended that the implementation of this method make use of caching.

Note that only a single PersistenceProviderResolver instance can be defined in a given classloader hierarchy at a given
time.

9.4. Schema Generation

In cases where a preconfigured database (or a “legacy” database) is not used or is not available, the Jakarta Persistence
schema generation facility may be used to generate the tables and other database artifacts required by the persistence

195

application. Whether schema generation entails the creation of schemas proper in the database is determined by the
environment and the configuration of the schema generation process, as described below.

Schema generation may happen either prior to application deployment or when the entity manager factory is created
as part of the application deployment and initialization process.

 In Jakarta EE environments, the container may call the PersistenceProvider generateSchema method separately from
and/or prior to the creation of the entity manager factory for the persistence unit, or the container may pass
additional information to the createContainerEntityManagerFactory call to cause schema generation to happen as part
of the entity manager factory creation and application initialization process. The information passed to these
methods controls whether the generation occurs directly in the target database, whether DDL scripts for schema
generation are created, or both.

* InJava SE environments, the application may call the Persistence generateSchema method separately from and/or
prior to the creation of the entity manager factory or may pass information to the createEntityManagerFactory method
to cause schema generation to occur as part of the entity manager factory creation.

The application may provide DDL scripts to be used for schema generation as described in Section 8.2.1.11. The
application developer may package these scripts as part of the persistence unit or may specify strings corresponding to
file URLs for the location of such scripts. In Jakarta EE environments, such scripts may be executed by the container, or
the container may direct the persistence provider to execute the scripts. In Java SE environments, the execution of the
scripts is the responsibility of the persistence provider. In the absence of the specification of scripts, schema
generation, if requested, will be determined by the object/relational metadata of the persistence unit.

The following standard properties are defined for configuring the schema generation process. In Jakarta EE
environments these properties are passed by the container in the Map argument to either the PersistenceProvider
generateSchema method or the createContainerEntityManagerFactory method. In Java SE environments, they are passed in
the Map argument to either the Persistence generateSchema method or createEntityManagerFactory method.

In Jakarta EE environments, any strings corresponding to file URLs for script sources or targets must specify absolute
paths (not relative). In Jakarta EE environments, all source and target file locations must be accessible to the
application server deploying the persistence unit

jakarta.persistence.schema-generation.database.action

The jakarta.persistence.schema-generation.database.action property specifies the action to be taken by the

"o

persistence provider with regard to the database artifacts. The values for this property are "none", "create”,

"drop-and-create”, "drop", "validate". If the jakarta.persistence.schema-generation.database.action property is not
specified, no schema generation actions must be taken on the database.

jakarta.persistence.schema-generation.scripts.action

The jakarta.persistence.schema-generation.scripts.action property specifies which scripts are to be generated by
the persistence provider. The values for this property are "none”, "create”, "drop-and-create"”, "drop". A script
will only be generated if the script target is specified. If this property is not specified, no scripts will be

generated.

jakarta.persistence.schema-generation.create-source

The jakarta.persistence.schema-generation.create-source property specifies whether the creation of database
artifacts is to occur on the basis of the object/relational mapping metadata, DDL script, or a combination of the
two. The values for this property are "metadata”, "script”, "metadata-then-script”, "script-then-metadata”. If this
property is not specified, and a script is specified by the jakarta.persistence.schema-generation.create-script-
source property, the script (only) will be used for schema generation; otherwise if this property is not specified,
schema generation will occur on the basis of the object/relational mapping metadata (only). The "metadata-then-

script” and "script-then-metadata” values specify that a combination of metadata and script is to be used and the

196

order in which this use is to occur. If either of these values is specified and the resulting database actions are not
disjoint, the results are undefined and schema generation may fail.

jakarta.persistence.schema-generation.drop-source

The jakarta.persistence.schema-generation.drop-source property specifies whether the dropping of database
artifacts is to occur on the basis of the object/relational mapping metadata, DDL script, or a combination of the
two. The values for this property are "metadata”, "script”, "metadata-then-script”, "script-then-metadata”. If this
property is not specified, and a script is specified by the jakarta.persistence.schema-generation.drop-script-source
property, the script (only) will be used for the dropping of database artifacts; otherwise if this property is not
specified, the dropping of database artifacts will occur on the basis of the object/relational mapping metadata
(only). The "metadata-then-script” and "script-then-metadata” values specify that a combination of metadata and
script is to be used and the order in which this use is to occur. If either of these values is specified and the
resulting database actions are not disjoint, the results are undefined and the dropping of database artifacts may

fail.

jakarta.persistence.schema-generation.create-database-schemas

In Jakarta EE environments, it is anticipated that the Jakarta EE platform provider may wish to control the
creation of database schemas rather than delegate this task to the persistence provider. The
jakarta.persistence.schema-generation.create-database-schemas property specifies whether the persistence
provider is to create the database schema(s) in addition to creating database objects such as tables, sequences,
constraints, etc. The value of this boolean property should be set to true if the persistence provider is to create
schemas in the database or to generate DDL that contains “CREATE SCHEMA” commands. If this property is not
supplied, the provider should not attempt to create database schemas. This property may also be specified in
Java SE environments. jakarta.persistence.schema-generation.scripts.create-target,

jakarta.persistence.schema-generation.scripts.drop-target

If scripts are to be generated, the target locations for the writing of these scripts must be specified.

The jakarta.persistence.schema-generation.scripts.create-target property specifies a java.io.Writer configured for
use by the persistence provider for output of the DDL script or a string specifying the file URL for the DDL script.
This property should only be specified if scripts are to be generated.

The jakarta.persistence.schema-generation.scripts.drop-target property specifies a java.io.Writer configured for
use by the persistence provider for output of the DDL script or a string specifying the file URL for the DDL script.
This property should only be specified if scripts are to be generated.

jakarta.persistence.database-product-name,
jakarta.persistence.database-major-version,
jakarta.persistence.database-minor-version

If scripts are to be generated by the persistence provider and a connection to the target database is not supplied,
the jakarta.persistence.database-product-name property must be specified. The value of this property should be
the value returned for the target database by the JDBC DatabaseMetaData method getDatabaseProductName. If
sufficient database version information is not included in the result of this method, the
jakarta.persistence.database-major-version and jakarta.persistence.database-minor-version properties should be
specified as needed. These should contain the values returned by the JDBC getDatabaseMajorVersion and

getDatabaseMinorVersion methods respectively. jakarta.persistence.schema-generation.create-script-source,

jakarta.persistence.schema-generation.drop-script-source

The jakarta.persistence.schema-generation.create-script-source and jakarta.persistence.schema-generation.drop-
script-source properties are used for script execution. In Jakarta EE container environments, it is generally
expected that the container will be responsible for executing DDL scripts, although the container is permitted to
delegate this task to the persistence provider. If DDL scripts are to be used in Java SE environments or if the

197

Jakarta EE container delegates the execution of scripts to the persistence provider, these properties must be
specified.

The jakarta.persistence.schema-generation.create-script-source property specifies a java.io.Reader configured for
reading of the DDL script or a string designating a file URL for the DDL script.

The jakarta.persistence.schema-generation.drop-script-source property specifies a java.io.Reader configured for
reading of the DDL script or a string designating a file URL for the DDL script.

jakarta.persistence.schema-generation.connection

The jakarta.persistence.schema-generation.connection property specifies the JDBC connection to be used for
schema generation. This is intended for use in Jakarta EE environments, where the platform provider may want
to control the database privileges that are available to the persistence provider. This connection is provided by
the container, and should be closed by the container when the schema generation request or entity manager
factory creation completes. The connection provided must have credentials sufficient for the persistence
provider to carry out the requested actions. If this property is not specified, the persistence provider should use
the DataSource that has otherwise been provided.

9.4.1. Data Loading

Data loading, by means of the use of SQL scripts, may occur as part of the schema generation process after the creation
of the database artifacts or independently of schema generation. The specification of the jakarta.persistence.sql-1load-
script-source controls whether data loading will occur.

jakarta.persistence.sql-load-script-source

In Jakarta EE container environments, it is generally expected that the container will be responsible for
executing data load scripts, although the container is permitted to delegate this task to the persistence provider.
If a load script is to be used in Java SE environments or if the Jakarta EE container delegates the execution of the
load script to the persistence provider, this property must be specified. + The jakarta.persistence.sql-1load-
script-source property specifies a java.io.Reader configured for reading of the SQL load script for database
initialization or a string designating a file URL for the script.

9.5. Responsibilities of the Persistence Provider

The persistence provider must implement the PersistenceProvider SPL

In Jakarta EE environments, the persistence provider must process the metadata that is passed to it at the time
createContainerEntityManagerFactory method is called and create an instance of EntityManagerFactory using the
PersistenceUnitInfo metadata for the factory. The factory is then returned to the container.

In Java SE environments, the persistence provider must validate the persistence.xml file against the persistence schema
that corresponds to the version specified by the persistence.xml file and report any validation errors.

The persistence provider processes the metadata annotations on the managed classes of the persistence unit.

When the entity manager factory for a persistence unit is created, it is the responsibility of the persistence provider to
initialize the state of the metamodel classes of the persistence unit.

When the persistence provider obtains an object/relational mapping file, it processes the definitions that it contains.
The persistence provider must validate any object/relational mapping files against the object/relational mapping
schema version specified by the object/relational mapping file and report any validation errors. The object relational
mapping file must specify the object/relational mapping schema that it is written against by indicating the version
element.

198

In Java SE environments, the application can pass the ValidatorFactory instance via the map that is passed as an
argument to the Persistence.createEntityManagerFactory call. The map key used must be the standard property name
jakarta.persistence.validation.factory. If no ValidatorFactory instance is provided by the application, and if a Bean
Validation provider is present in the classpath, the persistence provider must instantiate the ValidatorFactory using the
default bootstrapping approach as defined by the Bean Validation specification [5], namely
Validation.buildDefaultValidatorFactory().

9.5.1. jakarta.persistence.spi.PersistenceProvider

The PersistenceProvider interface found in Section E.3 must be implemented by the persistence provider.
The PersistenceProvider implementation class must have a public constructor with no parameters.

An instance of PersistenceProvider is responsible for creating provider-specific implementations of EntityManagerFactory.
It is invoked by the container in Jakarta EE environments and by the jakarta.persistence.Persistence class in Java SE
environments. The jakarta.persistence.spi.PersistenceProvider implementation is not intended to be used by the
application.

The properties passed to the createEntityManagerFactory() method in Java SE environments are described further in
Section 9.7 below.

9.5.2. jakarta.persistence.spi.ProviderUtil

The ProviderUtil interface found in Section E.7 is called by the Persistenceltil implementation to determine the load
status of an entity or entity attribute. It is not intended to be invoked by the application.

9.6. jakarta.persistence.spi.PersistenceUnitInfo Interface

The PersistenceUnitInfo interface may be found in Section E.6.

The enum jakarta.persistence.spi.PersistencelUnitTransactionType defines whether the entity managers created by the
factory will be JTA or resource-local entity managers. This enum is deprecated.

/*‘k
* Specifies whether entity managers created by the

* {@link jakarta.persistence.EntityManagerFactory}
* are JTA or resource-local entity managers.

* @since 1.0

* @deprecated replaced by
* {@link jakarta.persistence.PersistenceUnitTransactionType}
*/
(since = "3.2", forRemoval = true)
public enum PersistenceUnitTransactionType {

/** JTA entity managers are created. */
JTA,

/** Resource-local entity managers are created. */
RESOURCE _LOCAL

The enum jakarta.persistence.SharedCacheMode defines the use of caching. The persistence.xml shared-cache-mode element
has no default value. The getSharedCacheMode method must return UNSPECIFIED if the shared-cache-mode element has not
been specified for the persistence unit.

199

import jakarta.persistence.spi.PersistencelnitInfo;

/**

* Specifies how the provider must use a second-level cache for the

* persistence unit. Corresponds to the value of the {@code persistence.xml}
* {@code shared-cache-mode} element, and returned as the result of

* {@link PersistenceUnitInfo#igetSharedCacheMode()}.

*

* @since 2.0

*/

public enum SharedCacheMode {

/'k*
* A1l entities and entity-related state and data are cached.
*/
ALL,

/**

* Caching is disabled for the persistence unit.
*/

NONE,

/**

* Caching is enabled for all entities for which

* {@link Cacheable Cacheable(true)} is specified. All other
* entities are not cached.

*/

ENABLE_SELECTIVE,

/**

* Caching is enabled for all entities except those for which

* {@link Cacheable Cacheable(false)} is specified. Entities

* for which {@code Cacheable(false)} is specified are not cached.
*/

DISABLE_SELECTIVE,

/**

* Caching behavior is undefined: provider-specific defaults may apply.
*/

UNSPECIFIED

The enum jakarta.persistence.ValidationMode defines the validation mode.

/**

* The validation mode to be used by the provider for the persistence
* unit.

*

* @since 2.0

*/

public enum ValidationMode {

/**

If a Bean Validation provider is present in the environment,
the persistence provider must perform the automatic validation
of entities. If no Bean Validation provider is present in the
environment, no lifecycle event validation takes place.

This is the default behavior.

EE I B

*/
AUTO,

/**

* The persistence provider must perform the lifecycle event
* validation. It is an error if there is no Bean Validation
* provider present in the environment.

200

*/
CALLBACK,
/**

* The persistence provider must not perform lifecycle event
* validation.

*/

NONE

9.6.1. jakarta.persistence.spi.ClassTransformer Interface

The ClassTransformer interface found in Section E.1 may be implemented by a persistence provider to transform entities
and managed classes at class load time or at class redefinition time. A persistence provider is not required to
implement this interface.

9.7. jakarta.persistence.Persistence Class

The Persistence class may be found in Section B.17.

The Persistence class is used to obtain an EntityManagerFactory instance in Java SE environments. It may also be used for
schema generation—i.e., to create database schemas and/or tables and/or to create DDL scripts.

The Persistence class is also available in a Jakarta EE container environment; however, support for the Java SE
bootstrapping APIs is not required in container environments.

The Persistence class is used to obtain a Persistenceltil instance in both Jakarta EE and Java SE environments.

The properties argument passed to the createEntityManagerFactory method is used to specify both standard and vendor-
specific properties and hints intended for use in creating the entity manager factory and controlling its behavior.

The following properties correspond to the elements and attributes in the persistence.xml file. When any of these
properties are specified in the Map parameter passed to the createEntityManagerFactory method, their values override the
values of the corresponding elements and attributes in the persistence.xml file for the named persistence unit. They also
override any defaults that the persistence provider might have applied.

Corresponding elementin Notes
persistence.xml

Property Type

jakarta.persistence.provider String provider See Section 8.2.1.4.
jakarta.persistence.qualifiers String[] qualifier See Section 8.2.1.5.
jakarta.persistence.scope String scope See Section 8.2.1.5.
jakarta.persistence.transactionType String transaction-type See Section 8.2.1.2.
jakarta.persistence.jtaDataSource String jta-data-source See Section 8.2.1.7.
jakarta.persistence.nonJtaDataSource String non-jta-data-source See Section 8.2.1.7.
jakarta.persistence.sharedCache.mode String shared-cache-mode See Section 8.2.1.9.

201

Property Type Corresponding elementin Notes
persistence.xml

jakarta.persistence.validation.mode String validation-mode Legal values are " auto ", "
callback ", or " none ". See
Section 8.2.1.10 and Section

3.7.1.1.

The following properties correspond to the properties in the persistence.xml ile. When any of these properties are
specified in the Map parameter passed to the createEntityManagerFactory method, their values override the values of the
corresponding properties in the persistence.xml file for the named persistence unit. They also override any defaults that
the persistence provider might have applied.

Property Type Corresponding property in Notes
persistence.xml

jakarta.persistence.lock.timeout Integer or jakarta.persistence.lock.timeout Hint only. Value in
String milliseconds for
pessimistic lock
timeout. See Section

3.5.4.3.
jakarta.persistence.query.timeout Integer or jakarta.persistence.query.timeout Hint only. Value in
String milliseconds for query

timeout. See Section

3.11.4.
jakarta.persistence.validation.group.pre- String jakarta.persistence.validation.group.pre- See Section 8.2.1.11
persist persist and Section 3.7.1.2.
jakarta.persistence.validation.group.pre- String jakarta.persistence.validation.group.pre- See Section 8.2.1.11
update update and Section 3.7.1.2.
jakarta.persistence.validation.group.pre- String jakarta.persistence.validation.group.pre- See Section 8.2.1.11
remove remove and Section 3.7.1.2.
jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.create-script-source generation.create-script-source
jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.drop-script-source generation.drop-script-source
jakarta.persistence.sql-load-script-source String jakarta.persistence.sql-load-script-source See Section 8.2.1.11.
jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.database.action generation.database.action
jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.scripts.action generation.scripts.action
jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.create-source generation.create-source
jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.drop-source generation.drop-source

202

Property Type Corresponding property in Notes
persistence.xml

jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.scripts.create-target generation.scripts.create-target

jakarta.persistence.schema- String jakarta.persistence.schema- See Section 8.2.1.11.
generation.scripts.drop-target generation.scripts.drop-target

The following additional standard properties are defined by this specification for the configuration of the entity
manager factory:

Property Value

jakarta.persistence.jdbc.driver Fully qualified name of the driver class.

jakarta.persistence.jdbc.url Driver-specific JDBC URL as a string.

jakarta.persistence.jdbc.user Username for database connection.

jakarta.persistence.jdbc.password Password for database connection authentication.

jakarta.persistence.dataSource Instance of javax.sql.DataSource to be used for the specified persistence
unit.

jakarta.persistence.validation.factory Instance of jakarta.validation.ValidatorFactory.

Any number of vendor-specific properties may also be included in the map. If a persistence provider does not
recognize a property (other than a property defined by this specification), the provider must ignore it.

Vendors should use vendor namespaces for properties (e.g., com.acme.persistence.logging). Entries that make use of the
namespace jakarta.persistence and its subnamespaces must not be used for vendor-specific information. The
namespace jakarta.persistence is reserved for use by this specification.

9.8. jakarta.persistence.PersistenceConfiguration Class

The PersistenceConfiguration class found in Section B.18 is used to programmatically define and configure a persistence
unit and create an EntityManagerFactory instance directly. Thus, PersistenceConfiguration is an alternative to XML-based
configuration using persistence.xml, and so the configuration options available via this API reflect the similarly-named
elements of persistence.xml. See Section 8.2.1.

A programmatically-configured persistence unit is considered a Java SE persistence unit, even when this API is used

within the Jakarta EE environment.™

A persistence provider may define a subclass of PersistenceConfiguration with vendor-specific configuration options. A
provider must support configuration via any instance of PersistenceConfiguration or of any subclass of
PersistenceConfiguration. If a subclass defines configuration options the provider does not recognize, it should ignore
those options.

9.9. PersistenceUtil Interface

The PersistenceUtil interface found in Section B.19 is used to determine the load state of entity instances. The semantics
of the methods of this interface are defined in Section 9.9.1 below.

203

9.9.1. Contracts for Determining the Load State of an Entity or Entity Attribute

The implementation of the PersistenceUtil.isLoaded(Object) method must determine the list of persistence providers
available in the runtime environment™ and call the ProviderUtil. isLoaded(Object) method on each of them until either:

* one provider returns LoadState.LOADED. In this case PersistenceUtil.isLoaded returns true.
* one provider returns LoadState.NOT_LOADED. In this case PersistenceUtil.isLoaded returns false.

« all providers return LoadState.UNKNOWN. In this case PersistenceUtil.isLoaded returns true.

If the Persistenceltil implementation determines that only a single provider is available in the environment, it is
permitted to use provider-specific methods to determine the result of isLoaded(Object) as long as the semantics defined
in Section 3.3.9 are observed.

The implementation of the PersistenceUtil.isLoaded(Object,String) method must determine the list of persistence
providers available in the environment and call the ProviderUtil.isLoadedWithoutReference method on each of them until
either:

* one provider returns LoadState.LOADED. In this case PersistenceUtil.isLoaded returns true.
* one provider returns LoadState.NOT_LOADED. In this case PersistenceUtil.isLoaded returns false.

¢ all providers return LoadState.UNKNOWN. In this case, the PersistenceUtil.isLoaded method then calls
ProviderUtil.isLoadedWithReference on each of the providers until:

o one provider returns LoadState.LOADED. In this case PersistenceUtil.isLoaded return true.
o one provider returns LoadState.NOT_LOADED. In this case, PersistenceUtil.isLoaded returns false.

o all providers return LoadState.UNKNOWN. In this case, PersistenceUtil.isLoaded returns true.

If the Persistenceltil implementation determines that only a single provider is available in the environment, it is
permitted to use provider specific methods to determine the result of isLoaded(Object, String) as long as the semantics
defined in Section 3.3.9 are observed.

0 The rationale for splitting the determination of load state between the methods
isLoadedWithoutReference and isLoadedWithReference is the following.

o It is assumed that the provider that loaded the entity is present in the environment.

Providers that use bytecode enhancement don’t need to access an attribute reference to determine its load state, and
can determine if the entity has been provided by them.

* By first querying all providers using bytecode enhancement, it is insured that no attribute will be loaded by side effect.

* Proxy-based providers do need to access an attribute reference to determine load state, but will not trigger attribute
loading as a side effect.

* Ifno provider recognizes an entity as provided by it, it is assumed to be an object that is not instrumented and is
considered loaded.

[1] Use of these Java SE bootstrapping APIs may be supported in Jakarta EE containers; however, support for such use is
not required.

[2] In dynamic environments (e.g., 0SGi-based environments, containers based on dynamic kernels, etc.), the list of
persistence providers may change.

[3] If a custom PersistenceProviderResolver is needed in a JavaSE environment, it must be set before
Persistence.createEntityManagerFactory is called. Note, however, that the setPersistenceProviderResolver method is
not intended for general use, but rather is aimed at containers maintaining a dynamic environment.

[4] Persistence units defined programmatically using the PersistenceConfiguration class do not support JNDI lookup or
injection via the PersistenceContext or PersistencelUnit annotations.

204

[5] The determining of the persistence providers that are available is discussed in Section 9.3.

205

Chapter 10. Metadata Annotations

This chapter and chapter Chapter 11 define the metadata annotations introduced by this specification.
The XML schema defined in chapter Chapter 12 provides an alternative to the use of metadata annotations.

These annotations and types are in the package jakarta.persistence.

10.1. Entity

The Entity annotation specifies that the class is an entity. This annotation is applied to the entity class.

The name annotation element specifies the entity name. If the name element is not specified, the entity name defaults to
the unqualified name of the entity class. This name is used to refer to the entity in queries.

(TYPE)
(RUNTIME)
public Entity {

String name() default "";
}

10.2. Callback Annotations

The EntityListeners annotation specifies the callback listener classes to be used for an entity or mapped superclass. The
EntitylListeners annotation may be applied to an entity class or mapped superclass.

({TYPE})
(RUNTIME)
public EntityListeners {
Class[] value();
}

The ExcludeSuperclassListeners annotation specifies that the invocation of superclass listeners is to be excluded for the
entity class (or mapped superclass) and its subclasses.

({TYPE})
(RUNTIME)
public ExcludeSuperclassListeners {

}

The ExcludeDefaultListeners annotation specifies that the invocation of default listeners is to be excluded for the entity
class (or mapped superclass) and its subclasses.

({TYPE})
(RUNTIME)
public ExcludeDefaultListeners {

}

The following annotations are used to specify callback methods for the corresponding lifecycle events. These
annotations may be applied to methods of an entity class, of a mapped superclass, or of an entity listener class.

({METHOD})
(RUNTIME)
public PrePersist {}

({METHOD})

206

(RUNTIME)
public PostPersist {}

({METHOD})
(RUNTIME)
public PreRemove {}

({METHOD})
(RUNTIME)
public PostRemove {}

({METHOD})
(RUNTIME)
public PreUpdate {}

({METHOD})
(RUNTIME)
public PostUpdate {}

({METHOD})
(RUNTIME)
public PostlLoad {}

10.3. EntityGraph Annotations

10.3.1. NamedEntityGraph and NamedEntityGraphs Annotations

The NamedEntityGraph annotation defines a named entity graph. The annotation must be applied to the root entity of the
graph, and specifies the limits of the graph of associated attributes and entities fetched when an operation which
retrieves an instance or instances of the root entity is executed.

The name element assigns a name to the entity graph, and is used to identify the entity graph in calls to
EntityManager.getEntityGraph(). If no name is explicitly specified, the name defaults to the entity name of the annotated
root entity. Entity graph names must be unique within the persistence unit.

The attributeNodes element lists attributes of the annotated entity class that are to be included in the entity graph.

The includeAllAttributes element specifies that all attributes of the annotated entity class are to be included in the
entity graph. An attributeNode element may still be used in conjunction with this element to specify a subgraph for the
attribute.

The subgraphs element specifies a list of subgraphs, further specifying attributes that are managed types. These
subgraphs are referenced by name from NamedAttributeNode definitions.

The subclassSubgraphs element specifies a list of subgraphs that add additional attributes for subclasses of the root entity
to which the annotation is applied.

The NamedEntityGraphs annotation can be used to specify multiple named entity graphs for the entity to which it is
applied.

({TYPE})
(RUNTIME)
(NamedEntityGraphs.class)
public NamedEntityGraph {
String name() default "";
NamedAttributeNode[] attributeNodes() default {};
boolean includeAllAttributes() default false;
NamedSubgraph[] subgraphs() default {};
NamedSubgraph[] subclassSubgraphs() default {};

207

({TYPE})
(RUNTIME)
public NamedEntityGraphs {
NamedEntityGraph[] value();
}

10.3.2. NamedAttributeNode Annotation

The NamedAttributeNode annotation is used to specify an attribute node of within an entity graph or subgraph.
The value element specifies the name of the corresponding attribute.

The subgraph element is used to refer to a NamedSubgraph specification that further characterizes an attribute node
corresponding to a managed type (entity or embeddable). The value of the subgraph element must correspond to the name
used for the subgraph in the NamedSubgraph element. If the referenced attribute is an entity which has entity subclasses,
there may be more than one NamedSubgraph element with this name, and the subgraph element is considered to refer to all
of these.

The keySubgraph element is used to refer to a NamedSubgraph specification that further characterizes an attribute node
corresponding to the key of a Map-valued attribute. The value of the the keySubgraph element must correspond to the
name used for the subgraph in the NamedSubgraph element. If the referenced attribute is an entity which has entity
subclasses, there may be more than one NamedSubgraph element with this name, and the keySubgraph element is
considered to refer to all of these.

{1
(RUNTIME)
public NamedAttributeNode {
String value();
String subgraph() default "";
String keySubgraph() default "";

10.3.3. NamedSubgraph Annotation

The NamedSubgraph annotation is used to further define an attribute node. It is referenced by its name from the subgraph
or keySubgraph element of a NamedAttributeNode element.

The name element is the name used to reference the subgraph from a NamedAttributeNode definition. In the case of entity
inheritance, multiple subgraph elements have the same name.

The type element must be specified when the subgraph corresponds to a subclass of the entity type corresponding to
the referencing attribute node.

The attributeNodes element lists attributes of the class that must be included. If the subgraph corresponds to a subclass
of the class referenced by the corresponding attribute node, only subclass-specific attributes are listed.

(€8]
(RUNTIME)
public NamedSubgraph {
String name();
(lass type() default void.class;
NamedAttributeNode[] attributeNodes();

208

10.4. Annotations for Queries

The following annotations are used to declare named queries.

10.4.1. NamedQuery Annotation

The NamedQuery annotation declared a named query written in the Jakarta Persistence query language.

The name element assigns a name to the query, which is used to identify the query in calls to
EntityManager.createNamedQuery().

The query element must specify a query string itself, written in the Jakarta Persistence query language.

The resultClass element specifies the Java class of each query result. The query result class may be overridden by
explicitly passing a Class object to EntityManager.createNamedQuery(String, Class).If the resultClass element of a
NamedQuery annotation is not specified, the persistence implementation is entitled to default the result class to Object or
Object[].

The lockMode element specifies a lock mode for the entity instances in results returned by the query. If a lock mode other
than NONE is specified, the query may only be executed within a persistence context with an associated active

transaction.

The hints elements may be used to specify query properties and hints. Properties defined by this specification must be
observed by the provider; hints defined by this specification should be observed by the provider when possible.
Vendor-specific hints that are not recognized by a provider must be ignored.

The NamedQuery and NamedQueries annotations can be applied to an entity or mapped superclass.

({TYPE})
(RUNTIME)
(NamedQueries.class)
public NamedQuery {
String name();
String query();
Class<?> resultClass() default void.class;
LockModeType lockMode() default NONE;
QueryHint[] hints() default {};

}
H»H
(RUNTIME)
public QueryHint {
String name();
String value();
}
({TYPE})
(RUNTIME)
public NamedQueries {
NamedQuery[] value ();
}

10.4.2. NamedNativeQuery Annotation

The NamedNativeQuery annotation defines a named native SQL query.

The name element assigns a name to the query, which is used to identify the query in calls to
EntityManager.createNamedQuery().

209

The query element must specify the query string itself, written in the native SQL dialect of the database.

The resultClass element specifies the class of each query result. If a result set mapping is specified, the specified result
class must agree with the type inferred from the result set mapping. If a result(lass is not explicitly specified, then it is
inferred from the result set mapping, if any, or defaults to Object or Object[]. The query result class may be overridden
by explicitly passing a Class object to EntityManager.createNamedQuery(String, Class).

The resultSetMapping element specifies the name of a SqlResultSetMapping specification defined elsewhere in metadata.
The named SqlResultSetMapping is used to interpret the result set of the native SQL query. Alternatively, the elements
entities, classes, and columns may be used to specify a result set mapping. These elements may not be used in
conjunction with resultSetMapping.

The hints element may be used to specify query properties and hints. Hints defined by this specification should be
observed by the provider when possible. Vendor-specific hints which are not recognized by the provider must be
ignored.

The NamedNativeQuery and NamedNativeQueries annotations can be applied to an entity or mapped superclass.

({TYPE})
(RUNTIME)
(NamedNativeQueries.class)
public NamedNativeQuery {
String name();
String query();
QueryHint[] hints() default {};
Class resultClass() default void.class;
String resultSetMapping() default "";
EntityResult[] entities() default {};
ConstructorResult[] classes() default {};
ColumnResult[] columns() default {};

}
({TYPE})
(RUNTIME)
public NamedNativeQueries {
NamedNativeQuery[] value ();
}

10.4.3. NamedStoredProcedureQuery Annotation

The NamedStoredProcedureQuery annotation is used to specify a stored procedure, its parameters, and its result type.

The name element is the name that is passed as an argument to the createNamedStoredProcedureQuery method to create an
executable StoredProcedureQuery object.

The procedureName element is the name of the stored procedure in the database.

The parameters of the stored procedure are specified by the parameters element. All parameters must be specified in the
order in which they occur in the parameter list of the stored procedure.

The resultClasses element refers to the class (or classes) that are used to map the results. The resultSetMappings element
names one or more result set mappings, as defined by the SqlResultSetMapping annotation.

If there are multiple result sets, it is assumed that they will be mapped using the same mechanism—e.g., either all via a
set of result class mappings or all via a set of result set mappings. The order of the specification of these mappings must
be the same as the order in which the result sets will be returned by the stored procedure invocation. If the stored
procedure returns one or more result sets and no resultClasses or resultSetMappings element is specified, any result set
will be returned as a list of type Object[]. The combining of different strategies for the mapping of stored procedure

210

result sets is undefined.

The hints element may be used to specify query properties and hints. Properties defined by this specification must be
observed by the provider. Vendor-specific hints that are not recognized by a provider must be ignored.

The NamedStoredProcedureQuery and NamedStoredProcedureQueries annotations can be applied to an entity or mapped

superclass.
(TYPE)
(RUNTIME)
(NamedStoredProcedureQueries.class)
public NamedStoredProcedureQuery {

String name();

String procedureName();

StoredProcedureParameter[] parameters() default {};
Class[] resultClasses() default {};

String[] resultSetMappings() default {};
QueryHint[] hints() default {};

}
(TYPE)
(RUNTIME)
public NamedStoredProcedureQueries {
NamedStoredProcedureQuery [] value;
}

All parameters of a named stored procedure query must be specified using the StoredProcedureParameter annotation. The
name element refers to the name of the parameter as defined by the stored procedure in the database. If a parameter
name is not specified, it is assumed that the stored procedure uses positional parameters. The mode element specifies
whether the parameter is an IN, INOUT, OUT, or REF_CURSOR parameter. REF_CURSOR parameters are used by some
databases to return result sets from stored procedures. The type element refers to the JDBC type for the parameter.

(€8]
(RUNTIME)
public StoredProcedureParameter {
String name() default "";
ParameterMode mode() default ParameterMode.IN;

(lass type();

}
public enum ParameterMode {
IN,
INOUT,
ouT,
REF_CURSOR

10.4.4. Annotations for SQL Result Set Mappings

The SqlResultSetMapping annotation is used to specify the mapping of the result set of a native SQL query or stored

procedure.
({TYPE})
(RUNTIME)
(SqlResultSetMappings.class)
public SqlResultSetMapping {

String name();

EntityResult[] entities() default {};
ConstructorResult[] classes() default {};
ColumnResult[] columns() default {};

211

({TYPE})
(RUNTIME)
public SqlResultSetMappings {
SqlResultSetMapping[] value();
}

The name element is the name given to the result set mapping, and is used to identify it when calling methods of the
EntityManager which create instances of Query and StoredProcedureQuery. The entities, classes, and columns elements are
used to specify the mapping of result set columns to entities, to constructors, and to scalar values, respectively.

H»H
(RUNTIME)
public EntityResult {
(lass entityClass();
LockModeType lockMode() default LockModeType.OPTIMISTIC;
FieldResult[] fields() default {};
String discriminatorColumn() default "";

The entityClass element specifies the class of the result.
The lockMode element specifies the LockModeType obtained when the native SQL query is executed.

The fields element is used to map the columns specified in the SELECT list of the query to the properties or fields of the
entity class.

The discriminatorColumn element is used to specify the column name (or alias) of the column in the SELECT list that is
used to determine the type of the entity instance.

€8
(RUNTIME)
public FieldResult {
String name();
String column();

The name element is the name of the persistent field or property of the class.

The column element specifies the name of the corresponding column in the SELECT list—i.e., column alias, if applicable.

(value={})
(RUNTIME)
public ConstructorResult {
(lass targetClass();
ColumnResult[] columns();

The targetClass element specifies the class whose constructor is to be invoked.

The columns element specifies the mapping of columns in the SELECT list to the arguments of the intended constructor.

H»H
(RUNTIME)
public ColumnResult {
String name();
(lass type() default void.class;

The name element specifies the name of the column in the SELECT list.

212

The type element specifies the Java type to which the column type is to be mapped. If the type element is not specified,
the default JDBC type mapping for the column will be used.

10.5. References to EntityManager and EntityManagerFactory

These annotations are used to express dependencies on entity managers and entity manager factories.

10.5.1. PersistenceContext Annotation

The PersistenceContext annotation is used to express a dependency on a container-managed entity manager and its
associated persistence context.

The name element refers to the name by which the entity manager is to be accessed in the environment referencing
context, and is not needed when dependency injection is used.

The optional unitName element refers to the name of the persistence unit. If the unitName element is specified, the
persistence unit for the entity manager that is accessible in J]NDI must have the same name.

The type element specifies whether a transaction-scoped or extended persistence context is to be used. If the type
element is not specified, a transaction-scoped persistence context is used.

The synchronizationType element specifies whether the persistence context is always automatically synchronized with
the current transaction or whether the persistence context must be explicitly joined to the current transaction by
means of the EntityManager joinTransaction method.

The optional properties element may be used to specify properties for the container or persistence provider. Properties
defined by this specification must be observed by the provider. Vendor specific properties may be included in the set of
properties, and are passed to the persistence provider by the container when the entity manager is created. Properties
that are not recognized by a vendor must be ignored.

({TYPE, METHOD, FIELD})
(RUNTIME)
(PersistenceContexts.class)
public PersistenceContext {
String name() default "";
String unitName() default "";
PersistenceContextType type() default TRANSACTION;
SynchronizationType synchronization() default SYNCHRONIZED;

PersistenceProperty[] properties() default {};

}
public enum PersistenceContextType {
TRANSACTION,
EXTENDED
}
public enum SynchronizationType {
SYNCHRONIZED,
UNSYNCHRONIZED
}
)
(RUNTIME)
public PersistenceProperty {
String name();
String value();
}

The PersistenceContexts annotation declares one or more PersistenceContext annotations. It is used to express a

213

dependency on multiple persistence contexts'’.

({TYPE})
(RUNTIME)
public PersistenceContexts {
PersistenceContext[] value();

}

10.5.2. PersistenceUnit Annotation

The PersistencelUnit annotation is used to express a dependency on an entity manager factory and its associated
persistence unit.

The name element refers to the name by which the entity manager factory is to be accessed in the environment
referencing context, and is not needed when dependency injection is used.

The optional unitName element refers to the name of the persistence unit as defined in the persistence.xml file. If the
unitName element is specified, the persistence unit for the entity manager factory that is accessible in JNDI must have the
same name.

({TYPE, METHOD, FIELD})
(RUNTIME)
(PersistenceUnits.class)

public PersistenceUnit {

String name() default "";
String unitName() default "";

The Persistencelnits annotation declares one or more PersistencelUnit annotations. It is used to express a dependency on

multiple persistence units®.

(TYPE)
(RUNTIME)
public Persistencelnits {
PersistenceUnit[] value();

}

10.6. Annotations for Attribute Converter Classes

The Converter annotation declares that the annotated class is a converter and specifies whether the converter is applied
automatically. Every converter class must implement AttributeConverter and must be annotated with the Converter
annotation or declared as a converter in the XML descriptor. The target type for a converter is determined by the
actual type argument of the first type parameter of AttributeConverter.

({TYPE})
(RUNTIME)
public Converter {
boolean autoApply() default false;
}

If the autoApply element is specified as true, the persistence provider must automatically apply the converter to every
mapped attribute of the specified target type belonging to any entity in the persistence unit, except for attributes for
which conversion is overridden by means of the Convert annotation (or XML equivalent). The Convert annotation is
described in Section 11.1.10. The Convert annotation may be used to override or disable auto-apply conversion on a per-
attribute basis.

214

In determining whether a converter applies to an attribute, the provider must treat primitive types and wrapper types

as equivalent.

A converter never applies to id attributes, version attributes, relationship attributes, or to attributes explicitly
annotated as Enumerated or Temporal (or designated as such via XML).

A converter never applies to any attribute annotated @Convert(disableConversion=true) or to an attribute for which the
Convert annotation explicitly specifies a different converter.

If autoApply is false, the converter applies only to attributes of the target type for which conversion is explicitly enabled
via the Convert annotation (or corresponding XML element).

If there is more than one converter defined for the same target type, the Convert annotation must be used to explicitly

specify which converter applies.

[1] A dependency on ultiple persistence contexts may be needed, for example, when multiple persistence units are

used.

[2] Multiple persistence units may be needed, for example, when mapping to multiple databases.

215

Chapter 11. Metadata for Object/Relational Mapping

The object/relational mapping metadata is part of the application domain model contract. It expresses requirements
and expectations on the part of the application as to the mapping of the entities and relationships of the application
domain to a database. Queries (and, in particular, SQL queries) written against the database schema that corresponds
to the application domain model are dependent upon the mappings expressed by means of the object/relational
mapping metadata. The implementation of this specification must assume this application dependency upon the
object/relational mapping metadata and insure that the semantics and requirements expressed by that mapping are
observed.

The use of object/relational mapping metadata to control schema generation is specified in Section 11.2.

11.1. Annotations for Object/Relational Mapping

These annotations and types are in the package jakarta.persistence.

XML metadata may be used as an alternative to these annotations, or to override or augment annotations, as described
in Chapter 12.

11.1.1. Access Annotation

The Access annotation is used to specify an access type to be applied to an entity class, mapped superclass, or
embeddable class, or to a specific attribute of such a class.

({TYPE, METHOD, FIELD})
(RUNTIME)
public Access {
AccessType value();

}

Table 4 lists the annotation elements that may be specified for the Access annotation.

Table 4. Access Annotation Elements

Type Name Description Default

AccessType value (Required) The access type
to be applied to the class or
attribute.

11.1.2. AssociationOverride Annotation

The AssociationOverride annotation is used to override a mapping for an entity relationship.

The AssociationOverride annotation may be applied to an entity that extends a mapped superclass to override a
relationship mapping defined by the mapped superclass. If the AssociationOverride annotation is not specified, the
association is mapped the same as in the original mapping. When used to override a mapping defined by a mapped
superclass, the AssociationOverride annotation is applied to the entity class.

The AssociationOverride annotation may be used to override a relationship mapping from an embeddable within an
entity to another entity when the embeddable is on the owning side of the relationship. When used to override a
relationship mapping defined by an embeddable class (including an embeddable class embedded within another
embeddable class), the AssociationOverride annotation is applied to the field or property containing the embeddable.

216

When the AssociationOverride annotation is used to override a relationship mapping from an embeddable class, the name
element specifies the referencing relationship field or property within the embeddable class. To override mappings at
multiple levels of embedding, a dot (".") notation syntax must be used in the name element to indicate an attribute within
an embedded attribute. The value of each identifier used with the dot notation is the name of the respective embedded
field or property. When the AssociationOverride annotation is applied to override the mappings of an embeddable class
used as a map value, " value. " must be used to prefix the name of the attribute within the embeddable class that is
being overridden in order to specify it as part of the map value.™

If the relationship mapping is a foreign key mapping, the joinColumns element of the AssociationOverride annotation is
used. If the relationship mapping uses a join table, the joinTable element of the AssociationOverride element must be
specified to override the mapping of the join table and/or its join columns.”

The joinColumns element refers to the table for the class that contains the annotation.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the columns
corresponding to the joinColumns element when table generation is in effect. If both this element and the foreignKey
element of any of the joinColumns elements are specified, the behavior is undefined.

({TYPE, METHOD, FIELD})
(RUNTIME)
(AssociationOverrides.class)

public AssociationQverride {
String name();

JoinColumn[] joinColumns() default {};
ForeignKey foreignKey() default

(PROVIDER_DEFAULT);
JoinTable joinTable() default ;

Table 5 lists the annotation elements that may be specified for the AssociationOverride annotation.

Table 5. AssociationOverride Annotation Elements

Type Name Description Default

String name (Required) The name of the
relationship property whose
mapping is being overridden
if property-based access is
being used, or the name of
the relationship field if field-
based access is used.

217

Type Name

JoinColumn(] joinColumns

ForeignKey foreignKey

JoinTable joinTable
Example 1:

public class Employee {

protected Integer id;

protected Integer version;

protected Address address;

public Integer getId() { ... }
public void setId(Integer id) { ... }
public Address getAddress() { ... }

public void setAddress(Address address) { ... }

218

Description

The join column(s) being
mapped to the persistent
attribute(s). The
joinColumns element must
be specified if a foreign key
mapping is used in the
overriding of the mapping of
the relationship. The
joinColumns element must
not be specified if a join
table is used in the
overriding of the mapping of
the relationship

(Optional) The foreign key
constraint specification for
the join columns. This is
used only if table generation
is in effect.

The join table that maps the
relationship. The joinTable
element must be specified if
a join table is used in the
overriding of the mapping of
the relationship. The
joinTable element must not
be specified if a foreign key
mapping is used in the
overriding of the mapping of
the relationship.

Default

Provider’s default

pAssociationOverride(name="address", joinColumns=@JoinColumn(name="ADDR_ID"))
public class PartTimeEmployee extends Employee {
// address field mapping overridden to ADDR_ID foreign key
@Column(name="WAGE")
protected Float hourlyWage;

public Float getHourlyWage() { ... }

public void setHourlyWage(Float wage) { ... }

Example 2: Overriding of the mapping for the phoneNumbers relationship defined in the ContactInfo embeddable class.

@Entity

public class Employee {
@Id
int id;

@AssociationOverride(
name="phoneNumbers",
joinTable=@JoinTable(
name="EMPPHONES",
joinColumns=@JoinColumn(name="EMP"),
inverseJoinColumns=@JoinColumn(name="PHONE")
)

)
©@Embedded
ContactInfo contactInfo;

VS
}

©Embeddable

public class ContactInfo {
@ManyToOne Address address; // Unidirectional
@ManyToMany(targetEntity=PhoneNumber.class)
List phoneNumbers;

}

@Entity

public class PhoneNumber {
@Id
int number;
@ManyToMany(mappedBy="contactInfo.phoneNumbers")
Collection<Employee> employees;

}

11.1.3. AssociationOverrides Annotation

The mappings of multiple relationship properties or fields may be overridden. The AssociationOverrides annotation can

be used for this purpose.

@Target({TYPE, METHOD, FIELD})

@Retention(RUNTIME)

public @interface AssociationOverrides {
AssociationOverride[] value();

}

Table 6 lists the annotation elements that may be specified for the AssociationOverrides annotation.

Table 6. AssociationOverrides Annotation Elements

219

Type Name Description Default

AssociationOverride[] value (Required) The association
override mappings that are
to be applied to the
relationship field or
property.

Example:
public class Employee {
protected Integer id;
protected Integer version;
protected Address address;
protected Locker locker;
public Integer getId() { ... }
public void setId(Integer id) { ... }
public Address getAddress() { ... }
public void setAddress(Address address) { ... }
public Locker getLocker() { ... }
public void setlLocker(Locker locker) { ... }
}
({
(name="address", joinColumns= ("ADDR_ID")),
(name="locker", joinColumns= ("LCKR_ID"))})
public PartTimeEmployee { ... }
Alternatively:
(name="address", joinColumns= ("ADDR_ID"))
(name="locker", joinColumns= ("LCKR_ID"))

public PartTimeEmployee { ... }

11.1.4. AttributeOverride Annotation

The AttributeOverride annotation is used to override the mapping of a Basic (whether explicit or default) property or
field or Id property or field.

The AttributeOverride annotation may be applied to an entity that extends a mapped superclass or to an embedded field
or property to override a Basic mapping or Id mapping defined by the mapped superclass or embeddable class (or
embeddable class of one of its attributes).

The AttributeOverride annotation may be applied to an element collection containing instances of an embeddable class

220

or to a map collection whose key and/or value is an embeddable class. When the AttributeOverride annotation is applied
to a map, " key. " or " value. " must be used to prefix the name of the attribute that is being overridden in order to
specify it as part of the map key or map value.

To override mappings at multiple levels of embedding, a dot (".") notation form must be used in the name element to
indicate an attribute within an embedded attribute. The value of each identifier used with the dot notation is the name
of the respective embedded field or property.

If the AttributeOverride annotation is not specified, the column is mapped the same as in the original mapping.
Table 7 lists the annotation elements that may be specified for the AttributeOverride annotation.

The column element refers to the table for the class that contains the annotation.

({TYPE, METHOD, FIELD})
(RUNTIME)
(AttributeOverrides.class)
public AttributeOverride {
String name();
Column column();

Table 7. AttributeOverride Annotation Elements

Type Name Description Default

String name (Required) The name of the
property whose mapping is
being overridden if
property-based access is
being used, or the name of
the field if field-based access
is used.

Column column (Required) The column that
is being mapped to the
persistent attribute. The
mapping type will remain
the same as is defined in the
embeddable class or
mapped superclass.

Example 1:

public class Employee {

protected Integer id;

protected Integer version;
protected String address;
public Integer getId() { ... }

public void setId(Integer id) { ... }

221

public String getAddress() { ... }

public void setAddress(String address) { ... }
}

@Entity
@AttributeOverride(name="address", column=@Column(name="ADDR"))
public class PartTimeEmployee extends Employee {

// address field mapping overridden to ADDR

protected Float wage();

public Float getHourlyWage() { ... }

public void setHourlyWage(Float wage) { ... }

Example 2:

@Embeddable public class Address {
protected String street;

protected String city;

protected String state;

@Embedded

protected Zipcode zipcode;
}
@Embeddable

public class Zipcode {
protected String zip;
protected String plusFour;
}

@Entity

public class Customer {
@Id
protected Integer id;

protected String name;

@EAttributeOverride(name="state", column=@Column(name="ADDR_STATE"))
@AttributeOverride(name="zipcode.zip", column= @Column(name="ADDR_ZIP"))
@Embedded

protected Address address;

/] .

Example 3:

EEntity

public class PropertyRecord {
@EmbeddedId
PropertyOwner owner;

@AttributeOverrides(name="key.street", column=@Column(name="STREET_NAME"))
@eAttributeOverride(name="value.size", column=@Column(name="SQUARE FEET"))
@eAttributeOverride(name="value.tax", column=@Column(name="ASSESSMENT"))
@ElementCollection

Map<Address, PropertyInfo> parcels;

}

©Embeddable

222

public class PropertyInfo {
Integer parcelNumber;
Integer size;
BigDecimal tax;

11.1.5. AttributeOverrides Annotation

The mappings of multiple properties or fields may be overridden. The AttributeOverrides annotation can be used for
this purpose.

({TYPE, METHOD, FIELD})
(RUNTIME)
public AttributeOverrides {
AttributeOverride[] value();

}

Table 8 lists the annotation elements that may be specified for the AttributeOverrides annotation.

Table 8. AttributeOverrides Annotation Elements

Type Name Description Default

AttributeOverride(] value (Required) The
AttributeOverride mappings
that are to be applied to the

field or property.
Example:
({
(name="startDate", column= (name="EMP_START")),
(name="endDate", column= (name="EMP_END"))
9]

public EmploymentPeriod getEmploymentPeriod() { ... }

11.1.6. Basic Annotation

The Basic annotation is the simplest type of mapping to a database column. The Basic annotation may be applied to any
persistent property or instance variable whose type is one of the basic types listed in Section 2.6.

For the types listed above, the persistence provider must support mappings to the column types listed in tables B-2 and
B-4 of Appendix B of the JDBC 4.3 specification. See [3]. In addition, the provider must support mapping:

* java.time.Instant to the JDBC TIMESTAMP or TIMESTAMP_WITH_TIMEZONE type,

* java.time.Year to the JDBC INTEGER and SMALLINT types,

* java.math.BigInteger and java.math.BigDecimal to the JDBC NUMERIC and DECIMAL types,
* java.util.UUID to the JDBC CHAR and VARCHAR types, and

char[] to the JDBC CHAR, NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR, and LONGNVARCHAR types.

As described in Section 2.10, the use of the Basic annotation is optional for persistent fields and properties of the types
listed above. If the Basic annotation is not specified for such a field or property, the default values of the Basic
annotation will apply.

({METHOD, FIELD})

223

(RUNTIME)
public Basic {
FetchType fetch() default EAGER;
boolean optional() default true;

Table 9 lists the annotation elements that may be specified for the Basic annotation and their default values.

The FetchType enum defines strategies for fetching data from the database:

public enum FetchType { LAZY, EAGER };

The EAGER strategy is a requirement on the persistence provider runtime that data must be eagerly fetched. The LAZY
strategy is a hint to the persistence provider runtime that data should be fetched lazily when it is first accessed. The
implementation is permitted to eagerly fetch data for which the LAZY strategy hint has been specified. In particular, lazy
fetching might only be available for Basic mappings for which property-based access is used.

The optional element is a hint as to whether the value of the field or property may be null. It is disregarded for
primitive types.

Table 9. Basic Annotation Elements

Type Name Description Default

FetchType fetch (Optional) Whether the EAGER
value of the field or property
should be lazily loaded or
must be eagerly fetched. The
EAGER strategy is a
requirement on the
persistence provider
runtime that the value must
be eagerly fetched. The LAZY
strategy is a hint to the
persistence provider
runtime.

boolean optional (Optional) Whether the true
value of the field or property
may be null. This is a hint
and is disregarded for
primitive types; it may be
used in schema generation.

Example 1:

protected String name;

Example 2:

(fetch=LAZY)
protected String getName() { return name; }

If the persistence provider stores a value of type java.util.UUID in a column of type VARCHAR or equivalent, the value

224

must be stored in its canonical representation, unless the application explicitly indicates that some other
representation is preferred.

11.1.7. Cacheable Annotation

The Cacheable annotation specifies whether an entity should be cached if caching is enabled when the value of the
persistence.xml shared-cache-mode element is ENABLE_SELECTIVE or DISABLE_SELECTIVE. The value of the Cacheable annotation
is inherited by subclasses; it can be overridden by specifying Cacheable on a subclass.

({TYPE})
(RUNTIME)
public Cacheable {
boolean value() default true;

}

Cacheable(false) means that the entity and its state must not be cached by the provider.

If the shared-cache-mode element is not specified in the persistence.xml file and the jakarta.persistence.sharedCache.mode
property is not specified when the entity manager factory for the persistence unit is created, the semantics of the
Cacheable annotation are undefined.

Table 10. Cacheable Annotation Elements

Type Name Description Default

boolean value (Optional) Whether or not true
the entity should be cached.

11.1.8. CollectionTable Annotation

The CollectionTable annotation is used in the mapping of collections of basic or embeddable types. The CollectionTable
annotation specifies the table that is used for the mapping of the collection and is specified on the collection-valued
field or property.

({METHOD, FIELD})
(RUNTIME)
public CollectionTable {
String name() default "";
String catalog() default "";
String schema() default "";
JoinColumn[] joinColumns() default {};
ForeignKey foreignKey() default (PROVIDER_DEFAULT);
UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};

String options() default "";

By default, the columns of the collection table that correspond to the embeddable class or basic type are derived from
the attributes of the embeddable class or from the basic type according to the default values of the Column annotation, as
described in Section 11.1.9. In the case of a basic type, the column name is derived from the name of the collection-
valued field or property. In the case of an embeddable class, the column names are derived from the field or property
names of the embeddable class.

To override the default properties of the column used for a basic type, the Column annotation is used on the collection-
valued attribute in addition to the ElementCollection annotation. The value of the table element of the Column annotation
defaults to the name of the collection table.

225

To override these defaults for an embeddable class, the AttributeOverride and/or AttributeOverrides annotations must be

used in addition to the ElementCollection annotation. The value of the table element of the Column annotation used in the

AttributeOverride annotation defaults to the name of the collection table. If the embeddable class contains references to

other entities, the default values for the columns corresponding to those references may be overridden by means of the

AssociationOverride and/or AssociationOverrides annotations.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the columns

corresponding to the joinColumns element when table generation is in effect. If both this element and the foreignKey

element of any of the joinColumns elements are specified, the behavior is undefined. If no foreignkey annotation element

is specified in either location, the persistence provider’s default foreign key strategy will apply.

If the CollectionTable annotation is missing, the default values of the CollectionTable annotation elements apply.

This annotation may not be applied to a persistent field or property not annotated @ElementCollection.

Table 11 lists the annotation elements that may be specified for the CollectionTable annotation and their default values.

Type

String

String

String

JoinColumn([]

226

Table 11. CollectionTable Annotation Elements

Name

name

catalog

schema

joinColumns

Description

(Optional) The name of the
collection table.

(Optional) The catalog of the
table.

(Optional) The schema of the
table.

(Optional) The foreign key
columns of the collection
table which reference the
primary table of the entity.

Default

The concatenation of the
name of the containing
entity and the name of the
collection attribute,
separated by an underscore.

Default catalog.

Default schema for user.

(Default only applies if a
single join column is used.)
The same defaults as for
JoinColumn (i.e., the
concatenation of the
following: the name of the
entity; “_”; the name of the
referenced primary key
column.) However, if there is
more than one join column,
a JoinColumn annotation
must be specified for each
join column using the
JoinColumns annotation.
Both the name and the
referencedColumnName
elements must be specified
in each such JoinColumn
annotation.

Type

Name Description

ForeignKey foreignKey (Optional) The foreign key

constraint specification for
the join columns. This is
used only if table generation
is in effect.

UniqueConstraint[] uniqueConstraints (Optional) Unique

Index[]

String

constraints that are to be
placed on the table. These
are only used if table
generation is in effect.

indexes (Optional) Indexes for the
table. These are only used if
table generation is in effect.

options (Optional) A SQL fragment
appended to the generated
DDL.

Example:

©OEmbeddable
public class Address {

}

protected String street;
protected String city;
protected String state;

/] .

@Entity public class Person {

}

eId
protected String ssn;

protected String name;

protected Address home;

/] ...

@ElementCollection // use default table (PERSON_NICKNAMES)
@Column(name="name", length=50)

protected Set<String> nickNames = new HashSet();

/]

@Entity
public class WealthyPerson extends Person {

@ElementCollection

@CollectionTable(name="HOMES") // use default join column name

@AttributeOverrides({
@AttributeOverride(name="street", column=@Column(name="HOME_STREET")),
EAttributeOverride(name="city", column=@Column(name="HOME_CITY")),
@AttributeOverride(name="state", column=@Column(name="HOME_STATE"))

1)

protected Set<Address> vacationHomes = new HashSet();

Default

Provider’s default

No additional constraints

No additional indexes

Nothing appended.

227

VS

11.1.9. Column Annotation

The Column annotation is used to specify a mapped column for a persistent property or field.

Table 12 lists the annotation elements that may be specified for the Column annotation and their default values.

If no Column annotation is specified, the default values in Table 12 apply.

({METHOD, FIELD})
(RUNTIME)
public Column {

String name() default "";

boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;

String columnDefinition() default "";

String options() default "";

String table() default "";

int length() default 255;

int precision() default @; // decimal precision

int scale() default 0; // decimal scale

int secondPrecision() default -1; //fractional second precision
CheckConstraint[] check() default {}

String comment() default "";

Table 12. Column Annotation Elements

Type Name Description

String name (Optional) The name of the
column.

boolean unique (Optional) Whether the
column is a unique key. This
is a shortcut for the
UniqueConstraint
annotation at the table level
and is useful for when the
unique key constraint
corresponds to only a single
column. This constraint
applies in addition to any
constraint entailed by
primary key mapping and to
constraints specified at the
table level.

boolean nullable (Optional) Whether the
database column is nullable.

228

Default

The property or field name.

false

true

Type

boolean

boolean

String

String

String

int

Name

insertable

updatable

columnDefinition

options

table

length

Description

(Optional) Whether the
column is included in SQL
INSERT statements
generated by the persistence
provider.

(Optional) Whether the
column is included in SQL
UPDATE statements
generated by the persistence
provider.

(Optional) The SQL fragment
that is used when generating
the DDL for the column.

The specified DDL must be
written in the native SQL
dialect of the target
database, and is not portable
across databases.

(Optional) A SQL fragment
appended to the generated
DDL.

The specified DDL must be
written in the native SQL
dialect of the target
database, and is not portable
across databases.

(Optional) The name of the
table that contains the
column. If absent the
column is assumed to be in
the primary table for the
mapped object.

(Optional) The column
length

Applies only to columns
whose type is parameterized
by length, for example,
varchar or varbinary types.

Default

true

true

Generated SQL to create a
column of the inferred type.

Nothing appended.

Column is in primary table.

255

229

Type

int

int

int

CheckConstraint[]

230

Name

precision

scale

secondPrecision

check

Description

(Optional) The precision of a
column of SQL type decimal
or numeric, or of similar
database-native type.

Applies only to columns of
exact numeric type.

The default value 0 indicates
that a provider-determined
precision should be inferred.

(Optional) The scale of a
column of SQL type decimal
or numeric, or of similar
database-native type.

Applies only to columns of
exact numeric type.

The default value 0 indicates
that a provider-determined
scale should be inferred.

(Optional) The number of
decimal digits to use for
storing fractional seconds in
a SQL time or timestamp
column.

Applies only to columns of
time or timestamp type.

The default value -1
indicates that fractional
seconds should not be stored
in a time column, or that the
maximum number of digits
supported by the database
and JDBC driver should be
stored in a timestamp
column.

(Optional) Check constraints
for the column. These are
only used if table generation
is in effect.

Default

No check constraint

Type Name Description Default

String comment (Optional) Comment for the ~ No comment
column. This is only used if
table generation is in effect.

Portable applications which make use of schema generation should explicitly specify the precision and scale of columns
of type numeric or decimal.

Example 1:

(name="DESC", nullable=false, length=512)
public String getDescription() {
return description;

}

Example 2:

(name="DESC", columnDefinition="CLOB NOT NULL", table="EMP_DETAIL")

public String getDescription() {
return description;

}

Example 3:

(name="0RDER_COST", updatable=false, precision=12, scale=2)
public BigDecimal getCost() {
return cost;

}

11.1.10. Convert Annotation

The Convert annotation specifies how the values of a field or property are converted to a basic type, enabling a
converter which was defined autoApply=false, overriding the use of a converter which was defined autoApply=true (see
Section 10.6), or overriding the use of a converter specified by a field or property of an embedded type or inherited
mapped superclass.

When persistent properties are used, the Convert annotation is applied to the getter method.

It is not necessary to use the Basic annotation or corresponding XML element to specify the converted basic type. Nor is
it usually necessary to explicitly specify the converter class, except to disambiguate cases where multiple converters
would otherwise apply.

The Convert annotation may be applied to an entity that extends a mapped superclass to specify or override the
conversion mapping for an inherited basic attribute.

({METHOD, FIELD, TYPE})
(RUNTIME)
(Converts.class)
public Convert {
Class converter() default void.class;
String attributeName() default "";
boolean disableConversion() default false;

Table 13 lists the annotation elements that may be specified for the Convert annotation.

231

Table 13. Convert Annotation Elements

Type Name

Class converter

String attributeName
boolean disableConversion

Description

(Optional) The converter to
be applied.

(Optional) The name of the
attribute to convert. Must be
specified unless the Convert
annotation is applied to an
attribute of basic type or to
an element collection of
basic type. Must not be
specified otherwise.

(Optional) Whether
conversion of the attribute is
to be disabled.

Default

No converter

The basic attribute or basic
element collection attribute

to which the annotation is
applied

false

The converter element specifies the converter that is applied. Even if an automatically-applied converter would

otherwise be applicable to the annotated field or property, the converter specified by the converter element must be

applied instead.

The disableConversion element specifies that any automatically-applied converter that would otherwise be applicable to

the given field or property must not be applied.

If neither the converter element nor the disableConversion element is specified, and there is exactly one converter for the

type of the annotated field or property, that converter is applied, even if it is not an automatically-applied converter.

If multiple converters are applicable to the annotated field or property, and the converter element is not specified, the

behavior is undefined.

The Convert annotation should not be used to specify conversion of id attributes, (including the attributes of embedded

ids and derived identities), of version attributes, of relationship attributes, or of attributes explicitly annotated (or

designated via XML) as Enumerated or Temporal. Applications that depend on such conversions are not portable.

The Convert annotation may be applied to:

« a basic attribute, or

« a collection attribute (that is, an ElementCollection) of any type other than Map, in which case the converter is applied

to the elements of the collection.

In these cases, the attributeName element must not be specified.

Alternatively, the Convert annotation may be applied to:

* an embedded attribute,

* a collection attribute (that is, an ElementCollection) whose element type is an embeddable type, in which case the

converter is applied to the specified attribute of the embeddable instances contained in the collection,

* a map collection attribute (that is, an ElementCollection of type Map), in which case the converter is applied to the keys

or values of the map, or to the specified attribute of the embeddable instances contained in the map, or

* an entity class which extends a mapped superclass, to enable or override conversion of an inherited basic or

embedded attribute.

232

In these cases, the attributeName element must be specified.

To override conversion mappings at multiple levels of embedding, a dot (“.”) notation form must be used in the

attributeName element to indicate an attribute within an embedded attribute. The value of each identifier used with the

dot notation is the name of the respective embedded field or property.

The dot notation may also be used with map entries:

* When the Convert annotation is applied to a map to specify conversion of a map key or value of basic type, "key" or

"value", respectively, must be used as the value of the attributeName element to specify that it is the map key or value

that is converted.

* When the Convert annotation is applied to a map whose key or value type is an embeddable type, the attributeName

element must be specified, and "key." or "value." (respectively) must be used to prefix the name of the attribute of

the key or value type that is converted.

Example 1: Convert a basic attribute

public class BooleanToIntegerConverter implements AttributeConverter<Boolean, Integer> { ... }

public class Employee {
long id;

(converter=BooleanToIntegerConverter.class)
boolean fullTime;

/] ...

Example 2: Auto-apply conversion of a basic attribute

(autoApply=true)
public class EmployeeDateConverter implements

AttributeConverter<com.acme.EmployeeDate, java.sql.Date> { ...

public class Employee {
long id;
/...

// EmployeeDateConverter is applied automatically
EmployeeDate startDate;

Example 3: Disable conversion in the presence of an auto-apply converter

(disableConversion=true)
EmployeeDate lastReview;

Example 4: Apply a converter to an element collection of basic type

// applies to each element in the collection
(converter=NameConverter.class)
List<String> names;

233

Example 5: Apply a converter to an element collection that is a map of basic values. The converter is applied to the
map value.

(converter=EmployeeNameConverter.class)
Map<String, String> responsibilities;

Example 6: Apply a converter to a map key of basic type

(converter=ResponsibilityCodeConverter.class, attributeName="key")
Map<String, Employee> responsibilities;

Example 7: Apply a converter to an embeddable attribute

(converter=CountryConverter.class, attributeName="country")
Address address;

Example 8: Apply a converter to a nested embeddable attribute

(converter=CityConverter.class, attributeName="region.city")
Address address;

Example 9: Apply a converter to a nested attribute of an embeddable that is a map key of an element collection

public class PropertyRecord {
/] ...

(converter=CityConverter.class, attributeName="key.region.city")

Map<Address, PropertyInfo> parcels;

Example 10: Apply a converter to an embeddable that is a map key for a relationship

(converter=ResponsibilityCodeConverter.class, attributeName="key.jobType")
Map<Responsibility, Employee> responsibilities;

Example 11: Override conversion mappings for attributes inherited from a mapped superclass

(converter=DateConverter.class, attributeName="startDate")
(converter=DateConverter.class, attributeName="endDate")
public class FullTimeEmployee extends GenericEmployee { ... }

11.1.11. Converts Annotation

The Converts annotation can be used to group Convert annotations. Multiple converters must not be applied to the same
basic attribute.

({METHOD, FIELD, TYPE})
(RUNTIME)
public Converts {
Convert[] value();

234

Table 14 lists the annotation elements that may be specified for the Converts annotation.

Table 14. Converts Annotation Elements

Type Name Description Default

Convert[] value (Required) The Convert
mappings that are to be
applied to the entity or the
field or property.

Example: Multiple converters applied to an embedded attribute

€
(converter=CountryConverter.class, attributeName="country"),
(converter=CityConverter.class, attributeName="region.city")

b))

Address address;

11.1.12. DiscriminatorColumn Annotation

For the SINGLE_TABLE mapping strategy, and typically also for the JOINED strategy, the persistence provider will use a
type discriminator column. The DiscriminatorColumn annotation is used to define the discriminator column for the
SINGLE_TABLE and JOINED inheritance mapping strategies.

The strategy and the discriminator column are only specified in the root of an entity class hierarchy or subhierarchy in
which a different inheritance strategy is applied.”

The DiscriminatorColumn annotation can be specified on an entity class (including on an abstract entity class).

If the DiscriminatorColumn annotation is missing, and a discriminator column is required, the name of the discriminator
column defaults to "DTYPE" and the discriminator type to STRING.

Table 15 lists the annotation elements that may be specified for the DiscriminatorColumn annotation and their default
values.

The supported discriminator types are defined by the DiscriminatorType enum:

public enum DiscriminatorType { STRING, CHAR, INTEGER };

The type of the discriminator column, if specified in the optional columnDefinition element, must be consistent with the
discriminator type.

({TYPE})
(RUNTIME)
public DiscriminatorColumn {
String name() default "DTYPE";
DiscriminatorType discriminatorType() default STRING;

String columnDefinition() default "";

String options() default "";
int length() default 31;

Table 15. DiscriminatorColumn Annotation Elements

235

Type Name Description Default

String name (Optional) The name of "DTYPE"
column to be used for the
discriminator.

DiscriminatorType discriminatorType (Optional) The type of DiscriminatorType.STRING
object/column to use as a
class discriminator.

String columnDefinition (Optional) The SQL fragment Provider-generated SQL to
that is used when generating create a column of the
the DDL for the specified discriminator type.
discriminator column.

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.

int length (Optional) The column 31
length for String-based
discriminator types. Ignored
for other discriminator
types.

Example:
(name="CUST")
(name="DISC", discriminatorType=STRING, length=20)
public class Customer { ... }
public class ValuedCustomer extends Customer { ... }

11.1.13. DiscriminatorValue Annotation

The DiscriminatorValue annotation is used to specify the value of the discriminator column for entities of the given type.
The DiscriminatorValue annotation can only be specified on a concrete entity class. If the DiscriminatorValue annotation is
not specified and a discriminator column is used, a provider-specific function will be used to generate a value
representing the entity type.

The inheritance strategy and the discriminator column are only specified in the root of an entity class hierarchy or
subhierarchy in which a different inheritance strategy is applied. The discriminator value, if not defaulted, should be
specified for each entity class in the hierarchy.

Table 16 lists the annotation elements that may be specified for the DiscriminatorValue annotation and their default
values.

The discriminator value must be consistent in type with the discriminator type of the specified or defaulted
discriminator column. If the discriminator type is an integer, the value specified must be able to be converted to an
integer value (e.g., “1”).

({TYPE})
(RUNTIME)

236

public DiscriminatorValue {
String value();
}
Table 16. DiscriminatorValue Annotation Elements
Type Name Description Default
String value (Optional) The value that If the DiscriminatorValue
indicates that the row is an annotation is not specified, a
entity of the annotated provider-specific function to
entity type. generate a value
representing the entity type
is used for the value of the
discriminator column. If the
DiscriminatorType is
STRING, the discriminator
value default is the entity
name.
Example:

(name="CUST")
(strategy=SINGLE_TABLE)
(name="DISC", discriminatorType=STRING, length=20)
("CUSTOMER")
public class Customer { ... }

("VCUSTOMER™)
public class ValuedCustomer extends Customer { ... }

11.1.14. ElementCollection Annotation

The ElementCollection annotation defines a collection of instances of a basic type or embeddable class. The
ElementCollection annotation (or equivalent XML element) must be specified if the collection is to be mapped by means

of a collection table.””

({METHOD, FIELD})
(RUNTIME)
public ElementCollection {
(lass targetClass() default void.class;
FetchType fetch() default LAZY;

Table 17 lists the annotation elements that may be specified for the ElementCollection annotation and their default
values.

Table 17. ElementCollection Annotation Elements

237

Type Name

Class targetClass
FetchType fetch
Example:

public class Person {
protected String ssn;

protected String name;

protected Set<String> nickNames

VS

11.1.15. Embeddable Annotation

new HashSet();

Description

(Optional) The basic or
embeddable class that is the
element type of the
collection. Optional only if
the collection field or
property is defined using
Java generics. Must be
specified otherwise.

(Optional) Whether the
collection should be lazily
loaded or must be eagerly
fetched. The EAGER strategy
is a requirement on the
persistence provider
runtime that the collection
elements must be eagerly
fetched. The LAZY strategy is
a hint to the persistence
provider runtime.

Default

The parameterized type of
the collection when defined
using generics.

LAZY

The Embeddable annotation is used to specify a class whose instances are stored as an intrinsic part of an owning entity

and share the identity of the entity.

({TYPE})
(RUNTIME)
public Embeddable {
}
Example 1:

public class EmploymentPeriod {
(DATE)
java.util.Date startDate;

238

(DATE)
java.util.Date endDate;

VS

Example 2:

public class PhoneNumber {
protected String areaCode;
protected String localNumber;

PhoneServiceProvider provider;

/] ...

public class PhoneServiceProvider {
protected String name;

/] ...

Example 3:

public class Address {
protected String street;
protected String city;
protected String state;

protected Zipcode zipcode;

public class Zipcode {
protected String zip;
protected String plusFour;

11.1.16. Embedded Annotation

The Embedded annotation is used to specify a persistent field or property of an entity or embeddable class whose value is
an instance of an embeddable class.” Each of the persistent properties or fields of the embedded object is mapped to

the database table for the entity or embeddable class. The embeddable class must be annotated as Enbeddable.”

The AttributeOverride, AttributeOverrides, AssociationOverride, and AssociationOverrides annotations may be used to
override mappings declared or defaulted by the embeddable class.

Implementations are not required to support embedded objects that are mapped across more than one table (e.g., split
across primary and secondary tables or multiple secondary tables).

({METHOD, FIELD})
(RUNTIME)
public Embedded {}

239

Example:

{
(name="startDate", column= (name="EMP_START")),
(name="endDate", column= (name="EMP_END"))

1)
public EmploymentPeriod getEmploymentPeriod() { ... }

11.1.17. EmbeddedId Annotation

The EmbeddedId annotation is applied to a persistent field or property of an entity class or mapped superclass to denote a

composite primary key that is an embeddable class. The embeddable class must be annotated as Enbeddable.”

Relationship mappings defined within an embedded id class are not supported.
There must be only one EmbeddedId annotation and no Id annotation when the EmbeddedId annotation is used.
The AttributeOverride annotation may be used to override the column mappings declared within the embeddable class.

The MapsId annotation may be used in conjunction with the EmbeddedId annotation to specify a derived primary key. See
Section 2.4.2 and Section 11.1.38.

If the entity has a derived primary key, the AttributeOverride annotation may only be used to override those attributes
of the embedded id that do not correspond to the relationship to the parent entity.

({METHOD, FIELD})
(RUNTIME)
public EmbeddedId {}

Example 1:

public class Employee {
protected EmployeePK empPK;

String name;

Set<Department> dept;

/] ...

Example 2:

public class DependentId {
String name;
EmployeeId empPK; // corresponds to PK type of Employee

public class Dependent {
// default column name for "name" attribute is overridden
(name="name", (name="dep_name"))
DependentId id;
/] ...
(nempPKn)

240

Employee emp;

11.1.18. Enumerated Annotation

An Enumerated annotation specifies that a persistent property or field should be persisted as an enumerated type. The
Enumerated annotation is optional if the type of a persistent field or property is a Java enum type.

The Enumerated annotation may be used in conjunction with the Basic annotation. The Enumerated annotation may be used
in conjunction with the ElementCollection annotation' when the element type of the collection is an enum type.

[9]

An enum can be mapped as either a string or an integer . The EnumType enum defines the available options for mapping

enumerated types.

public enum EnumType {
ORDINAL,
STRING

The value member of the Enumerated annotation specifies the EnumType:

({METHOD, FIELD})
(RUNTIME)
public Enumerated {
EnumType value() default ORDINAL;
}

Table 18 lists the annotation elements that may be specified for the Enumerated annotation and their default values.

Table 18. Enumerated Annotation Elements

Type Name Description Default

EnumType value (Optional) The type used in ORDINAL
mapping an enum type.

If a persistent field or property of enum type has no explicit Enumerated annotation, and if no converter is applied to the
field or property:

¢ if the enum type has a final field of type java.lang.String annotated EnumeratedValue, the enumerated type is inferred
to be STRING;

» otherwise, the enumerated type is taken to be ORDINAL.

The enum type may have a final field annotated EnumeratedValue. This field, if it exists, controls the mapping of enum
values to database column values:

¢ if the enum type does have a field annotated EnumeratedValue, each enum value is mapped to the value of the
annotated field, or, otherwise,
¢ if the enumerated type is ORDINAL, each enum value is mapped to the value of the ordinal field, but

¢ if the enumerated type is STRING, each enum value is mapped to the value of the name field.

Example:

public enum EmployeeStatus {FULL_TIME, PART_TIME, CONTRACT}
public enum SalaryRate {JUNIOR, SENIOR, MANAGER, EXECUTIVE}

241

public class Employee {
/] ...

public EmployeeStatus getStatus() {...}

(STRING)
public SalaryRate getPayScale() {...}

/] ...

If the status property is mapped to a column of integer type, and the payscale property to a column of varchar type, an
instance that has a status of PART_TIME and a pay rate of JUNIOR will be stored with STATUS set to 1 and PAYSCALE set to
"JUNIOR".

11.1.19. EnumeratedValue Annotation

The EnumeratedValue annotation specifies that an annotated field of a Java enum type is the source of database column
values when the enum occurs as the declared type of an Enumerated property or field. The annotated field must be
declared final, and must be of type:

* byte, short, or int for an ORDINAL enumerated type, or

* java.lang.String for a STRING enumerated type.
The field must not be set to null, and must hold a distinct value for each value of the enum type.

If the type of the field annotated EnumeratedValue disagrees with the enumerated type mapping specified by the
Enumerated annotation, the behavior is undefined. Portable applications should ensure that the type of the field
annotated EnumeratedValue agrees with the type mapping wherever the enum type is used in a field or property
explicitly annotated Enumerated.

If a converter is applied to an Enumerated field or property, the EnumeratedValue annotation is ignored for that field or
property.

Example:

enum Status {
OPEN(@), CLOSED(1), CANCELLED(-1);

final int intValue;

Status(int intValue) {
this.intValue = intValue;

}

11.1.20. ForeignKey Annotation

The ForeignKey annotation is used to specify the handling of foreign key constraints when schema generation is in
effect. If this annotation is not specified, the persistence provider’s default foreign key strategy will be used.

{hH

(RUNTIME)
public ForeignKey {
String name() default "";
ConstraintMode value() default CONSTRAINT;

String foreignKeyDefinition() default "";
242

String options() default "";

The name element specifies a name for the foreign key constraint.

The ConstraintMode enum is used to control the application of constraints.

public enum ConstraintMode {CONSTRAINT, NO_CONSTRAINT, PROVIDER_DEFAULT}

The enum values have the following semantics: A value of CONSTRAINT will cause the persistence provider to generate a
foreign key constraint. A value of NO_CONSTRAINT will result in no constraint being generated. A value of PROVIDER_DEFAULT
will result in the provider’s default behavior (which may or may not result in the generation of a constraint for any
given join column or set of join columns).

The syntax used in the foreignKeyDefinition element should follow the SQL syntax used by the target database for
foreign key constraints. For example, this may be similar to the following:

FOREIGN KEY (<COLUMN expression> {, <COLUMN expression>}...)

REFERENCES <TABLE identifier> [(<COLUMN expression> {, <COLUMN expression>}...)]
[ON UPDATE <referential action>]

[ON DELETE <referential action>]

If the ForeignKey annotation is specified with a ConstraintMode value of CONSTRAINT, but the foreignKeyDefinition element is
not specified, the provider will generate a foreign key constraint whose update and delete actions it determines most
appropriate for the join column(s) to which the foreign key constraint is applied

Table 19 lists the annotation elements that may be specified for the ForeignKey annotation.

Table 19. ForeignKey Annotation Elements

Type Name Description Default

String name (Optional) The name of the A provider-generated name.
foreign key constraint.

ConstraintMode value (Optional) Whether to CONSTRAINT
generate a constraint.

String foreignKeyDefinition (Optional) The foreign key Provider-default. If the value
constraint definition. of the ConstraintMode element
is® NO_CONSTRAINT ', the
provider must not generate
a foreign key constraint.

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.

11.1.21. GeneratedValue Annotation

The GeneratedValue annotation specifies a generation strategy for the values of primary keys. The GeneratedValue
annotation may be applied to a primary key property or field of an entity or mapped superclass in conjunction with the
Id annotation."” The persistence provider is only required to support the use of the GeneratedValue annotation for
simple primary keys. Use of the GeneratedValue annotation for derived primary keys is not supported.

243

Table 20 lists the annotation elements that may be specified for the GeneratedValue annotation and their default values.

The types of primary key generation are defined by the GenerationType enum:

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, UUID, AUTO };

The TABLE generator type value indicates that the persistence provider must assign primary keys for the entity using an
underlying database table to ensure uniqueness.

The SEQUENCE and IDENTITY values specify the use of a database sequence or identity column, respectively.""

The further specification of table generators and sequence generators is described in Section 11.1.49 and Section
11.1.52.

A TABLE, SEQUENCE, or IDENTITY generator may be used to generate values for a primary key property or field of type

java.lang.long, java.lang.Integer, long, Or int.
The UUID value indicates that the persistence provider should assign an RFC 4122 Universally Unique IDentifier.

A UUID generator may be used to generate values for a primary key property or field of type java.util.UUID or
java.lang.String.

The AUTO value indicates that the persistence provider should pick an appropriate strategy given the type of the primary
key property or field, and the capabilities of the particular database. In the case of a field or property of type
java.util.UUID or java.lang.String, the AUTO strategy is equivalent to UUID. In the case of a field or property of type
java.lang.Long, java.lang.Integer, long, or int, the AUTO strategy may select between TABLE, SEQUENCE, or IDENTITY.

The AUTO generation strategy may expect a database resource to exist, or it may attempt to create one. A vendor may
provide documentation on how to create such resources in the event that it does not support schema generation or
cannot create the schema resource at runtime.

This specification does not define the exact behavior of these strategies.

However, if the persistence provider stores a value generated according to the UUID strategy in a column of type VARCHAR
or equivalent, the value must be stored in its canonical representation, unless the application explicitly indicates that
some other representation is preferred.

The name member specifies the name of a generator to use, and defaults to the entity name of the entity in which the
GeneratedValue annotation occurs. If the name is not specified, and if there is no generator with the defaulted name, then
the persistence provider supplies a default id generator, of a type compatible with the value of the strategy member.

({METHOD, FIELD})
(RUNTIME)
public GeneratedValue {
GenerationType strategy() default AUTO;

String generator() default "";

Table 20. GeneratedValue Annotation Elements

244

Type Name Description Default

GenerationType strategy (Optional) The primary key GenerationType.AUTO
generation strategy that the
persistence provider must
use to generate the
annotated entity primary

key.

String generator (Optional) The name of the The entity name of the entity
primary key generator to in which the annotation
use as specified in the occurs.

SequenceGenerator or
TableGenerator annotation
which declares the
generator.

Example 1:

(strategy=SEQUENCE, generator="CUST_SEQ")
(name="CUST_ID")
public Long getId() { return id; }

Example 2:

(strategy=TABLE, generator="CUST_GEN")
(name="CUST_ID")
Long id;

11.1.22. Id Annotation

The Id annotation declares a primary key property or field of an entity. The Id annotation may be applied to a property
or field of:

* an entity class that is the root of an entity hierarchy, or

« a mapped superclass that is a superclass of all entity classes in an entity hierarchy.

The field or property to which the Id annotation is applied should have one of the legal simple primary key types listed

in Section 2.4.14™3

The mapped column for the primary key of the entity is assumed to be the primary key of the primary table. If no
Column annotation is specified, the primary key column name is assumed to be the name of the primary key property or
field.

({METHOD, FIELD})
(RUNTIME)
public Id {}

Example:

public Long getId() { return id; }

245

11.1.23. IdClass Annotation

The IdClass annotation is applied to an entity class or a mapped superclass to specify a composite primary key class
that is mapped to multiple fields or properties of the entity.

The names of the fields or properties in the primary key class and the primary key fields or properties of the entity
must correspond and their types must match according to the rules specified in Section 2.4 and Section 2.4.2.

The Id annotation must also be applied to the corresponding fields or properties of the entity.

({TYPE})
(RUNTIME)
public IdClass {
Class value();

}

Table 21 lists the annotation elements that may be specified for the IdClass annotation.

Table 21. IdClass Annotation Elements

Type Name Description Default
Class value (Required) The composite
primary key class.
Example:

(com.acme.EmployeePK.class)
public class Employee {

String empName;

Date birthDay;

/] ...

11.1.24. Index Annotation

The Index annotation is used in schema generation. Note that it is not necessary to specify an index for a primary key, as
the primary key index will be created automatically, however, the Index annotation may be used to specify the
ordering of the columns in the index for the primary key.

€8
(RUNTIME)
public Index {
String name() default "";
String columnList();
boolean unique() default false;

String options() default "";

The syntax of the columnList element is a column_1ist, as follows:

column_list::= index_column [,index_column]*
index_column::= column_name [ASC | DESC]

246

The persistence provider must observe the specified ordering of the columns.
If ASC or DESC is not specified, ASC (ascending order) is assumed.
Table 22 lists the annotation elements that may be specified for the Index annotation.

Table 22. Index Annotation Elements

Type Name Description Default

String name (Optional) The name of the A provider-generated name.
index.

String columnList (Required) The names of the
columns to be included in
the index.

boolean unique (Optional) Whether the false

index is unique.

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.

11.1.25. Inheritance Annotation

The Inheritance annotation defines the inheritance strategy to be used for an entity class hierarchy. It is specified on the
entity class that is the root of the entity class hierarchy.

If the Inheritance annotation is not specified or if no inheritance type is specified for an entity class hierarchy, the
SINGLE_TABLE mapping strategy is used.

Support for the combination of inheritance strategies is not required by this specification. Portable applications should
only use a single inheritance strategy within an entity hierarchy.

The three inheritance mapping strategies are the single table per class hierarchy, joined subclass, and table per
concrete class strategies. See Section 2.14 for a more detailed discussion of inheritance strategies.

The inheritance strategy options are defined by the InheritanceType enum:

public enum InheritanceType { SINGLE_TABLE, JOINED, TABLE_PER_CLASS };

Support for the TABLE_PER_CLASS mapping strategy is optional in this release.

Table 23 lists the annotation elements that may be specified for the Inheritance annotation and their default values.

({TYPE})
(RUNTIME)
public Inheritance {
InheritanceType strategy() default SINGLE_TABLE;

}

Table 23. Inheritance Annotation Elements

247

Type Name Description Default

InheritanceType strategy (Optional) The inheritance InheritanceType.SINGLE_TA
strategy to use for the entity =~ BLE
inheritance hierarchy.

Example:

(strategy=JOINED)
public class Customer { ... }

public class ValuedCustomer extends Customer { ... }

11.1.26. JoinColumn Annotation

The JoinColumn annotation is used to specify a column for joining an entity association or element collection.
Table 24 lists the annotation elements that may be specified for the JoinColumn annotation and their default values.

If the JoinColumn annotation itself is defaulted, a single join column is assumed and the default values described in Table
24 apply.

The name annotation element defines the name of the foreign key column. The remaining annotation elements (other
than referencedColumnName) refer to this column and have the same semantics as for the Column annotation.

If the referencedColumnName element is missing, the foreign key is assumed to refer to the primary key of the referenced
table.

Support for referenced columns that are not primary key columns of the referenced table is optional. Applications that
use such mappings will not be portable.

The foreignKey annotation element is used to specify or control the generation of a foreign key constraint when schema
generation is in effect. If this element is not specified, the persistence provider’s default foreign key strategy will apply.

If more than one JoinColumn annotation is applied to a field or property, both the name and the referencedColumnName
elements must be specified in each such JoinColumn annotation.

({METHOD, FIELD})
(RUNTIME)
(JoinColumns.class)
public JoinColumn {
String name() default "";
String referencedColumnName() default "";
boolean unique() default false;
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;

String columnDefinition() default "";

String options() default "";

String table() default "";

ForeignKey foreignKey() default (PROVIDER_DEFAULT);
CheckConstraint[] check() default {}

String comment() default "";

Table 24. JoinColumn Annotation Elements

248

Type

String

Name

name

Description

(Optional) The name of the
foreign key column. The
table in which it is found
depends upon the context. If
the join is for a OneToOne or
ManyToOne mapping using
a foreign key mapping
strategy, the foreign key
column is in the table of the
source entity or
embeddable. If the join is for
a unidirectional OneToMany
mapping using a foreign key
mapping strategy, the
foreign key is in the table of
the target entity. If the join is
for a ManyToMany mapping
or for a OneToOne or
bidirectional
ManyToOne/OneToMany
mapping using a join table,
the foreign key is in a join
table. If the join is for an
element collection, the
foreign key is in a collection
table.

Default

(Default only applies if a
single join column is used.)
The concatenation of the
following: the name of the
referencing relationship
property or field of the
referencing entity or
embeddable class; “_”; the
name of the referenced
primary key column. If there
is no such referencing
relationship property or
field in the entity, or if the
join is for an element
collection, the join column
name is formed as the
concatenation of the
following: the name of the

entity; “_”; the name of the
referenced primary key
column.

249

Type

String

boolean

boolean

boolean

250

Name

referencedColumnName

unique

nullable

insertable

Description

(Optional) The name of the
column referenced by this
foreign key column. When
used with entity relationship
mappings other than the
cases described below, the
referenced column is in the
table of the target entity.
When used with a
unidirectional OneToMany
foreign key mapping, the
referenced column is in the
table of the source entity.
When used inside a
JoinTable annotation, the
referenced key column is in
the entity table of the
owning entity, or inverse
entity if the join is part of
the inverse join definition.
When used in a collection
table mapping, the
referenced column is in the
table of the entity containing
the collection.

(Optional) Whether the
property is a unique key.
This is a shortcut for the
UniqueConstraint
annotation at the table level
and is useful for when the
unique key constraint is only
a single field. It is not
necessary to explicitly
specify this for a join column
that corresponds to a
primary key that is part of a
foreign key.

(Optional) Whether the
foreign key column is
nullable.

(Optional) Whether the
column is included in SQL
INSERT statements
generated by the persistence
provider.

Default

(Default only applies if
single join column is being
used.) The same name as the

primary key column of the
referenced table.

false

true

true

Type

boolean

String

String

ForeignKey

CheckConstraint[]

String

String

Example 1:

Name

updatable

columnDefinition

table

foreignKey

check

comment

options

Description

(Optional) Whether the
column is included in SQL
UPDATE statements
generated by the persistence
provider.

(Optional) The SQL fragment
that is used when generating
the DDL for the column.

(Optional) The name of the
table that contains the
column.

(Optional) The foreign key
constraint for the join
column. This is used only if
table generation is in effect.

(Optional) Check constraints
for the column. These are
only used if table generation
is in effect.

(Optional) Comment for the
column. This is only used if
table generation is in effect.

(Optional) A SQL fragment
appended to the generated
DDL.

Default

true

Generated SQL for the
column.

If the join is for a OneToOne
or ManyToOne mapping
using a foreign key mapping
strategy, the name of the
table of the source entity or
embeddable. If the join is for
a unidirectional OneToMany
mapping using a foreign key
mapping strategy, the name
of the table of the target
entity. If the join is for a
ManyToMany mapping or
for a OneToOne or
bidirectional ManyToOne/
OneToMany mapping using
a join table, the name of the
join table. If the join is for an
element collection, the name
of the collection table.

Provider’s default

No check constraint

No comment

Nothing appended.

251

(name="ADDR_ID")
public Address getAddress() { return address; }

Example 2: Unidirectional One-to-Many association using a foreign key mapping.

In Customer class:

(name="CUST_ID") // join column is in table for Order
public Set<Order> getOrders() { return orders; }

11.1.27. JoinColumns Annotation

Composite foreign keys are supported by means of the JoinColumns annotation. The JoinColumns annotation groups
JoinColumn annotations for the same relationship.

When the JoinColumns annotation is used, both the name and the referencedColumnName elements must be specified in each
of the grouped JoinColumn annotations.

The foreignKey annotation element is used to specify or control the generation of a foreign key constraint when schema
generation is in effect. If both this element and the foreignKey element of any of the JoinColumn elements referenced by
the value element are specified, the behavior is undefined. If no foreignkKey annotation element is specified in either
location, the persistence provider’s default foreign key strategy will apply.

({METHOD, FIELD})
(RUNTIME)
public JoinColumns {
JoinColumn[] value();
ForeignKey foreignKey() default (PROVIDER_DEFAULT);

Table 25 lists the annotation elements that may be specified for the JoinColumns annotation.

Table 25. JoinColumns Annotation Elements

Type Name Description Default

JoinColumn([] value (Required) The join columns
that map the relationship.

ForeignKey foreignKey (Optional) The foreign key Provider’s default
constraint specification for
the join columns. This is
used only if table generation
is in effect.

Example:

({
(name="ADDR_ID", referencedColumnName="ID"),
(name="ADDR_ZIP", referencedColumnName="ZIP")

1))
public Address getAddress() { return address; }

252

11.1.28. JoinTable Annotation

The JoinTable annotation is used in the mapping of entity associations. A JoinTable annotation is specified on the owning
side of the association. A join table is typically used in the mapping of many-to-many and unidirectional one-to-many
associations. It may also be used to map bidirectional many-to-one/one-to-many associations, unidirectional many-to-
one relationships, and one-to-one associations (both bidirectional and unidirectional).

Table 26 lists the annotation elements that may be specified for the JoinTable annotation and their default values.

If the JoinTable annotation is not explicitly specified for the mapping of a many-to-many or unidirectional one-to-many
relationship, the default values of the annotation elements apply.

The name of the join table is assumed to be the table names of the associated primary tables concatenated together
(owning side first) using an underscore.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the columns
corresponding to the joinColumns element when table generation is in effect. If both this element and the foreignKey
element of any of the joinColumns elements are specified, the behavior is undefined. If no foreignkey annotation element
is specified in either location, the persistence provider’s default foreign key strategy will apply. The inverseForeignKey
element applies to the generation of a foreign key constraint for the columns corresponding to the inverseJoinColumns
element, and similar rules apply.

When a join table is used in mapping a relationship with an embeddable class on the owning side of the relationship,
the containing entity rather than the embeddable class is considered the owner of the relationship.

This annotation may not be applied to a persistent field or property not annotated @ManyToOne, @neToOne, @ManyToMany, or
@0neToMany.

({METHOD, FIELD})
(RUNTIME)
public JoinTable {
String name() default "";
String catalog() default "";
String schema() default "";
JoinColumn[] joinColumns() default {};
JoinColumn[] inverseJoinColumns() default {};
ForeignKey foreignKey() default (PROVIDER_DEFAULT);
ForeignKey inverseForeignKey() default (PROVIDER_DEFAULT);
UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};
CheckConstraint[] check() default {}

String comment() default "";

String options() default "";

}
Table 26. JoinTable Annotation Elements
Type Name Description Default
String name (Optional) The name of the The concatenated names of
join table. the two associated primary

entity tables (owning side
first), separated by an
underscore.

String catalog (Optional) The catalog of the Default catalog.

table.

253

Type

String

JoinColumn([]

JoinColumn([]

ForeignKey

ForeignKey

UniqueConstraint[]

Index(]

CheckConstraint[]

String

254

Name

schema

joinColumns

inverseJoinColumns

foreignKey

inverseForeignKey

uniqueConstraints

indexes

check

comment

Description

(Optional) The schema of the
table.

(Optional) The foreign key
columns of the join table
which reference the primary
table of the entity owning
the association (i.e. the
owning side of the
association).

(Optional) The foreign key
columns of the join table
which reference the primary
table of the entity that does
not own the association (i.e.
the inverse side of the
association).

(Optional) The foreign key
constraint specification for
the join columns. This is
used only if table generation
is in effect.

(Optional) The foreign key
constraint specification for
the inverse join columns.
This is used only if table
generation is in effect.

(Optional) Unique
constraints that are to be
placed on the table. These
are only used if table
generation is in effect.

(Optional) Indexes for the
table. These are only used if
table generation is in effect.

(Optional) Check constraints
for the table. These are only
used if table generation is in
effect.

(Optional) Comment for the
table. This is only used if
table generation is in effect.

Default

Default schema for user.

The same defaults as for

JoinColumn.

The same defaults as for

JoinColumn.

Provider’s default.

Provider’s default.

No additional constraints

No additional indexes

No check constraint

No comment

Type Name Description Default

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.
Example:
(

name="CUST_PHONE",

joinColumns= (name="CUST_ID", referencedColumnName="ID"),

inverseJoinColumns= (name="PHONE _ID", referencedColumnName="ID")

)

11.1.29. Lob Annotation

A Lob annotation specifies that a persistent property or field should be persisted as a large object to a database-
supported large object type. Portable applications should use the Lob annotation when mapping to a database Lob type.

M annotation

The Lob annotation may be used in conjunction with the Basic annotation or with the "ElementCollection
when the element collection value is of basic type. A Lob may be either a binary or character type. The Lob type is

inferred from the type of the persistent field or property and, except for string and character types, defaults to Blob.

({METHOD, FIELD})

(RUNTIME)
public Lob {
}
Example 1:

(fetch=EAGER)
(name="REPORT")
protected String report;

Example 2:

(fetch=LAZY)
(name="EMP_PIC", columnDefinition="BLOB NOT NULL")
protected byte[] pic;

11.1.30. ManyToMany Annotation

A ManyToMany annotation defines a many-valued association with many-to-many multiplicity. If the collection is defined
using generics to specify the element type, the associated target entity class does not need to be specified; otherwise it
must be specified.

Every many-to-many association has two sides, the owning side and the non-owning, or inverse, side. If the association
is bidirectional, either side may be designated as the owning side. If the relationship is bidirectional, the non-owning
side must use the mappedBy element of the ManyToMany annotation to specify the relationship field or property of the
owning side.

The join table for the relationship, if not defaulted, is specified on the owning side.

The ManyToMany annotation may be used within an embeddable class contained within an entity class to specify a

255

relationship to a collection of entities™. If the relationship is bidirectional and the entity containing the embeddable
class is the owner of the relationship, the non-owning side must use the mappedBy element of the ManyToMany annotation to

specify the relationship field or property of the embeddable class. The dot (".") notation syntax must be used in the
mappedBy element to indicate the relationship attribute within the embedded attribute. The value of each identifier used

with the dot notation is the name of the respective embedded field or property.
Table 27 lists these annotation elements that may be specified for the ManyToMany annotation and their default values.

The cascade element specifies the set of cascadable operations that are propagated to the associated entity. The
operations that are cascadable are defined by the CascadeType enum:

public enum CascadeType {ALL, PERSIST, MERGE, REMOVE, REFRESH, DETACH};

The value cascade=ALL is equivalent to cascade={PERSIST, MERGE, REMOVE, REFRESH, DETACH}.

When the collection is a java.util.Map, the cascade element applies to the map value.

({METHOD, FIELD})
(RUNTIME)
public ManyToMany {
(lass targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;

String mappedBy() default "";

The EAGER strategy is a requirement on the persistence provider runtime that the associated entity must be eagerly
fetched. The LAZY strategy is a hint to the persistence provider runtime that the associated entity should be fetched lazily
when it is first accessed. The implementation is permitted to eagerly fetch associations for which the LAZY strategy hint
has been specified.

Table 27. ManyToMany Annotation Elements

Type Name Description Default

Class targetEntity (Optional) The entity class The parameterized type of
that is the target of the the collection when defined
association. Optional only if =~ using generics.
the collection-valued
relationship property is
defined using Java generics.
Must be specified otherwise.

CascadeTypel] cascade (Optional) The operations No operations are cascaded.

256

that must be cascaded to the
target of the association.

Type Name Description

FetchType fetch (Optional) Whether the
association should be lazily
loaded or must be eagerly
fetched. The EAGER strategy
is a requirement on the
persistence provider
runtime that the associated
entities must be eagerly
fetched. The LAZY strategy is
a hint to the persistence
provider runtime.

String mappedBy The field or property that
owns the relationship.
Required unless the
relationship is
unidirectional.
Example 1:
In Customer class:

(name="CUST_PHONES")
public Set<PhoneNumber> getPhones() { return phones; }

In PhoneNumber class:

(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

Example 2:
In Customer class:

(targetEntity=com.acme.PhoneNumber.class)
public Set getPhones() { return phones; }

In PhoneNumber class:

(targetEntity=com.acme.Customer.class, mappedBy="phones")
public Set getCustomers() { return customers; }

Example 3:

In Customer class:

(
name="CUST_PHONE",
joinColumns= (name="CUST_ID", referencedColumnName="ID"),
inverseJoinColumns= (name="PHONE_ID",referencedColumnName="ID")

)
public Set<PhoneNumber> getPhones() { return phones; }

Default

LAZY

257

In PhoneNumberClass:

(mappedBy="phones")
public Set<Customer> getCustomers() { return customers; }

Example 4:

Embeddable class used by the Employee entity specifies a many-to-many relationship.

public class Employee {

int 1id;

ContactInfo contactInfo;

/] ...

public class ContactInfo {

Address address; // Unidirectional

List<PhoneNumber> phoneNumbers; // Bidirectional

public class PhoneNumber {
int phNumber;

(mappedBy="contactInfo.phoneNumbers")
Collection<Employee> employees;

11.1.31. ManyToOne Annotation

The ManyToOne annotation defines a single-valued association to another entity class that has many-to-one multiplicity. It
is not normally necessary to specify the target entity explicitly since it can usually be inferred from the type of the
object being referenced.

The ManyToOne annotation may be used within an embeddable class to specify a relationship from the embeddable class
to an entity class. If the relationship is bidirectional, the non-owning OneToMany entity side must use the mappedBy element
of the OneToMany annotation to specify the relationship field or property of the embeddable field or property on the
owning side of the relationship. The dot (“.”) notation syntax must be used in the mappedBy element to indicate the
relationship attribute within the embedded attribute. The value of each identifier used with the dot notation is the
name of the respective embedded field or property.

Table 28 lists the annotation elements that may be specified for the ManyToOne annotation and their default values.

({METHOD, FIELD})
(RUNTIME)
public ManyToOne {
(lass targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default EAGER;
boolean optional() default true;

258

The operations that can be cascaded are defined by the CascadeType enum, defined in Section 11.1.30.

The EAGER strategy is a requirement on the persistence provider runtime that the associated entity must be eagerly

fetched. The LAZY strategy is a hint to the persistence provider runtime that the associated entity should be fetched lazily

when it is first accessed. The implementation is permitted to eagerly fetch associations for which the LAZY strategy hint

has been specified.

Type

Class

Table 28. ManyToOne Annotation Elements

Name

targetEntity

Description

(Optional) The entity class
that is the target of the
association.

Default

The type of the field or
property that stores the
association.

CascadeTypel] cascade (Optional) The operations No operations are cascaded.
that must be cascaded to the

target of the association.

FetchType fetch (Optional) Whether the EAGER
association should be lazily
loaded or must be eagerly
fetched. The EAGER strategy
is a requirement on the
persistence provider
runtime that the associated
entity must be eagerly
fetched. The LAZY strategy is
a hint to the persistence
provider runtime.

boolean optional (Optional) Whether the true

association is optional. If set
to false then a non-null
relationship must always
exist.

Example 1:

(optional=false)
(name="CUST_ID", nullable=false, updatable=false)
public Customer getCustomer() { return customer; }

Example 2:

public class Employee {

int 1id;

JobInfo jobInfo;

/] ...

259

public class JobInfo {
String jobDescription;

ProgramManager pm; // Bidirectional

public class ProgramManager {
int id;

(mappedBy="jobInfo.pm")
Collection<Employee> manages;

11.1.32. MapKey Annotation

The MapKey annotation is used to specify the map key for associations of type java.util.Map when the map key is itself the
primary key or a persistent field or property of the entity that is the value of the map.

({METHOD, FIELD})
(RUNTIME)
public MapKey {

String name() default "";
}

The name element designates the name of the persistent field or property of the associated entity that is used as the map
key. If the name element is not specified, the primary key of the associated entity is used as the map key. If the primary
key is a composite primary key and is mapped as IdClass, an instance of the primary key class is used as the key.

If a persistent field or property other than the primary key is used as a map key, it is expected to be unique within the
context of the relationship.

The MapKeyClass annotation is not used when MapKey is specified and vice versa.
Table 29 lists the annotation elements that may be specified for the MapKey annotation.

Table 29. MapKey Annotation Elements

Type Name Description Default

String name (Optional) The name of the The primary key is used as
persistent field or property the map key.
that is used as the map key.

Example 1:

public class Department {
/] ...
(mappedBy="department")

// map key is primary key
public Map<Integer, Employee> getEmployees() { ... }

260

/] ...

public class Employee {
/] ...
public Integer getEmpId() { ... }

(name="dept_id")
public Department getDepartment() { ... }

/] ...

Example 2:

public class Department {
/] ...

(mappedBy="department")
(name="name")

public Map<String, Employee> getEmployees() { ... }

/] ...

public class Employee {
public Integer getEmpId() { ... }
/] ...
public String getName() { ... }
/] ...
(name="dept_id")
public Department getDepartment() { ... }

VS

11.1.33. MapKeyClass Annotation

The MapKeyClass annotation is used to specify the type of the map key for associations of type java.util.Map . The map key
can be a basic type, an embeddable class, or an entity. If the map is specified using Java generics, the MapKeyClass
annotation and associated type need not be specified; otherwise they must be specified.

({METHOD, FIELD})
(RUNTIME)
public MapKeyClass {
Class value();

}

The MapKeyClass annotation is used in conjunction with ElementCollection or one of the collection-valued relationship
annotations (OneToMany or ManyToMany).

261

The MapKey annotation is not used when MapKeyClass is specified and vice versa.
Table 30 lists the annotation elements that may be specified for the MapKeyClass annotation.

Table 30. MapKeyClass Annotation Elements

Type Name Description Default
Class value (Required) The type of the
map key.
Example 1:
EEntity
public class Item {
@Id
int id;
/] ...

@ElementCollection(targetClass=String.class)
@MapKeyClass(String.class)
Map images; // map from image name to image filename

/]

Example 2:

// MapKey(Class and target type of relationship can be defaulted
@Entity
public class Item {

@Id

int id;

/]

@ElementCollection
Map<String, String> images;

/] ...
}
Example 3:
@Entity
public class Company {
@Id
int id;
VY
@0neToMany(targetEntity=com.example.VicePresident.class)
@MapKeyClass(com.example.Division.class)
Map organization;
}
Example 4:

// MapKeyClass and target type of relationship are defaulted
EEntity
public class Company {

262

int 1id;

VS

Map<Division, VicePresident> organization;

11.1.34. MapKeyColumn Annotation

The MapKeyColumn annotation is used to specify the mapping for the key column of a map whose map key is a basic type.
If the name element is not specified, it defaults to the concatenation of the following: the name of the referencing
relationship field or property; “_”; “KEY”.

({METHOD, FIELD})
(RUNTIME)
public MapKeyColumn {

String name() default "";

boolean unique() default false;
boolean nullable() default false;
boolean insertable() default true;
boolean updatable() default true;

nn

String columnDefinition() default "";

String options() default "";

String table() default "";

int length() default 255;

int precision() default @; // decimal precision

int scale() default 0; // decimal scale

If no MapKeyColumn annotation is specified, the default values in Table 31 apply.

Table 31. MapKeyColumn Annotation Elements

263

Type

String

boolean

boolean

boolean

264

Name

name

unique

nullable

insertable

Description

(Optional) The name of the
map key column. The table
in which it is found depends
upon the context. If the map
key is for an element
collection, the map key
column is in the collection
table for the map value. If
the map key is for a
ManyToMany entity
relationship or for a
OneToMany entity
relationship using a join
table, the map key column is
in a join table. If the map
key is for a OneToMany
entity relationship using a
foreign key mapping
strategy, the map key
column is in the table of the
entity that is the value of the
map.

(Optional) Whether the
column is a unique key. This
is a shortcut for the
UniqueConstraint
annotation at the table level
and is useful for when the
unique key constraint
corresponds to only a single
column. This constraint
applies in addition to any
constraint entailed by
primary key mapping and to
constraints specified at the
table level.

(Optional) Whether the
database column is nullable.

(Optional) Whether the
column is included in SQL
INSERT statements
generated by the persistence
provider.

Default

The concatenation of the
following: the name of the
referencing property or field
name; " _"; " KEY".

false

true

true

Type

boolean

String

String

String

int

int

Name

updatable

columnDefinition

options

table

length

precision

Description

(Optional) Whether the
column is included in SQL
UPDATE statements
generated by the persistence
provider.

(Optional) The SQL fragment
that is used when generating
the DDL for the column.

(Optional) A SQL fragment
appended to the generated
DDL.

(Optional) The name of the
table that contains the
column.

(Optional) The column
length

Applies only to columns
whose type is parameterized
by length, for example,
varchar or varbinary types.

(Optional) The precision of a
column of SQL type decimal
or numeric, or of similar
database-native type.

Applies only to columns of
exact numeric type.

The default value 0 indicates
that a provider-determined
precision should be inferred.

Default

true

Generated SQL to create a
column of the inferred type.

Nothing appended.

If the map key is for an
element collection, the name
of the collection table for the
map value. If the map key is
for a OneToMany or
ManyToMany entity
relationship using a join
table, the name of the join
table for the map. If the map
key is for a OneToMany
entity relationship using a
foreign key mapping
strategy, the name of the
primary table of the entity
that is the value of the map.

255

265

Type Name Description Default

int scale (Optional) The scale of a 0
column of SQL type decimal
or numeric, or of similar
database-native type.

Applies only to columns of
exact numeric type.

The default value 0 indicates
that a provider-determined
scale should be inferred.

Example:

public class Item {
int id;
/] ...
(name="IMAGE_NAME")
(name="IMAGE_FILENAME")
(name="IMAGE_MAPPING")

Map<String, String> images; // map from image name to filename

/] ..

11.1.35. MapKeyEnumerated Annotation

The MapKeyEnumerated annotation is used to specify the enum type for a map key whose basic type is an enumerated type.

The MapKeyEnumerated annotation can be applied to an element collection or relationship of type java.util.Map, in
conjunction with the ElementCollection, OneToMany, or ManyToMany annotation. If the map is specified using Java generics,
the MapKey(Class annotation and associated type need not be specified; otherwise they must be specified.

If the enumerated type is not specified or the MapKeyEnumerated annotation is not used, the enumerated type is assumed
to be ORDINAL.

({METHOD, FIELD})
(RUNTIME)
public MapKeyEnumerated {
EnumType value() default ORDINAL;
}

Table 32 lists the annotation elements that may be specified for the MapKeyEnumerated annotation and their default
values. The EnumType enum is defined in Section 11.1.18.

Table 32. MapKeyEnumerated Annotation Elements

266

Type Name Description Default

EnumType value (Optional) The type used in ORDINAL
mapping an enum type.

11.1.36. MapKeyJoinColumn Annotation

The MapKeyJoinColumn annotation is used to specify a mapping to an entity that is a map key. The map key join column is
in the collection table, join table, or table of the target entity that is used to represent the map.

({METHOD, FIELD})
(RUNTIME)
(MapKeyJoinColumns.class)
public MapKeyJoinColumn {

String name() default "";

String referencedColumnName() default "";
boolean unique() default false;

boolean nullable() default false;

boolean insertable() default true;
boolean updatable() default true;

String columnDefinition() default "";

String options() default "";
String table() default "";
ForeignKey foreignKey() default (PROVIDER_DEFAULT);

Table 33 lists the annotation elements that may be specified for the MapKeyJoinColumn annotation and their default
values.

If no MapKeyJoinColumn annotation is specified, a single join column is assumed and the default values described below
(and in Table 33) apply.

The name annotation element defines the name of the foreign key column. The remaining annotation elements (other
than referencedColumnName) refer to this column.

If there is a single map key join column, and if the name annotation member is missing, the map key join column name
is formed as the concatenation of the following: the name of the referencing relationship property or field of the
referencing entity or embeddable; " _"; " KEY ".

If the referencedColumnName element is missing, the foreign key is assumed to refer to the primary key of the referenced
table. Support for referenced columns that are not primary key columns of the referenced table is optional.
Applications that use such mappings will not be portable.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the map key join
column when table generation is in effect. If the foreignKey element is not specified, the persistence provider’s default
foreign key strategy will be used.

If more than one MapKeyJoinColumn annotation is applied to a field or property, both the name and the referencedColumnName
elements must be specified in each such MapKeyJoinColumn annotation.

Table 33. MapKeyJoinColumn Annotation Elements

267

Type

String

String

boolean

boolean

boolean

268

Name

name

referencedColumnName

unique

nullable

insertable

Description

(Optional) The name of the
foreign key column for the
map key. The table in which
it is found depends upon the
context. If the join is for a
map key for an element
collection, the foreign key
column is in the collection
table for the map value. If
the join is for a map key for
a ManyToMany entity
relationship or for a
OneToMany entity
relationship using a join
table, the foreign key
column is in a join table. If
the join is for a OneToMany
entity relationship using a
foreign key mapping
strategy, the foreign key
column for the map key is in
the table of the entity that is
the value of the map.

(Optional) The name of the
column referenced by this
foreign key column. The
referenced column is in the
table of the target entity.

(Optional) Whether the
property is a unique key.
This is a shortcut for the
UniqueConstraint
annotation at the table level
and is useful for when the
unique key constraint is only
a single field.

(Optional) Whether the
foreign key column is
nullable.

(Optional) Whether the
column is included in SQL
INSERT statements
generated by the persistence
provider.

Default

(Default only applies if a
single join column is used.)
The concatenation of the
following: the name of the
referencing relationship
property or field of the
referencing entity or
embeddable class; “_”;
"KEY".

(Default only applies if
single join column is being
used.) The same name as the
primary key column of the
referenced table.

false

true

true

Type Name

boolean updatable

String columnDefinition

String options

String table

ForeignKey foreignKey
Example 1:

public class Company {
int id;
/] ...

// unidirectional

Description

(Optional) Whether the
column is included in SQL
UPDATE statements
generated by the persistence
provider.

(Optional) The SQL fragment
that is used when generating
the DDL for the column.

(Optional) A SQL fragment
appended to the generated
DDL.

(Optional) The name of the
table that contains the
foreign key column. If the
join is for a map key for an
element collection, the
foreign key column is in the
collection table for the map
value. If the join is for a map
key for a ManyToMany
entity relationship or for a
OneToMany entity
relationship using a join
table, the foreign key
column is in a join table. If
the join is for a OneToMany
entity relationship using a
foreign key mapping
strategy, the foreign key
column for the map key is in
the table of the entity that is
the value of the map.

(Optional) The foreign key
constraint specification for
the join column. This is used
only if table generation is in
effect.

Default

true

Generated SQL for the
column.

Nothing appended.

If the map is for an element
collection, the name of the
collection table for the map
value. If the map is for a
OneToMany or
ManyToMany entity
relationship using a join
table, the name of the join
table for the map. If the map
is for a OneToMany entity
relationship using a foreign
key mapping strategy, the
name of the primary table of
the entity that is the value of
the map.

Provider’s default

269

@JoinTable(
name="COMPANY_ORGANIZATION",
joinColumns=@JoinColumn(name="COMPANY"),
inverseJoinColumns=@JoinColumn(name="VICEPRESIDENT")

)
@MapKeyJoinColumn(name="DIVISION")
Map<Division, VicePresident> organization;

Example 2:

EEntity

public class VideoStore {
@Id
int id;

String name;
Address location;
/] ...

@ElementCollection

@CollectionTable(name="INVENTORY", joinColumns=@JoinColumn(name="STORE"))
@Column(name="COPIES_IN_STOCK")

@MapKeyJoinColumn(name="MOVIE", referencedColumnName="ID")

Map<Movie, Integer> videolnventory;

/] .
}

@Entity

public class Movie {
@Id
long id;

String title;

/1.

Example 3:

@Entity

public class Student {
@Id
int studentId;

/] ..

@ManyToMany // students and courses are also many-many

@JoinTable(
name="ENROLLMENTS",
joinColumns=@JoinColumn(name="STUDENT"),
inverseJoinColumns=@JoinColumn(name="SEMESTER")

)

@MapKeyJoinColumn(name="COURSE")

Map<Course, Semester> enrollment;

/] ...

270

11.1.37. MapKeyJoinColumns Annotation

Composite map keys referencing entities are supported by means of the MapKeyJoinColumns annotation. The
MapKeyJoinColumns annotation groups MapKeyJoinColumn annotations.

When the MapKeyJoinColumns annotation is used, both the name and the referencedColumnName elements must be specified in
each of the grouped MapKeyJoinColumn annotations.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the columns
corresponding to the MapKeyJoinColumn elements referenced by the value element when table generation is in effect. If
both this element and the foreignKey element of any of the MapKeyJoinColumn elements are specified, the behavior is
undefined. If no foreignkKey annotation element is specified in either location, the persistence provider’s default foreign
key strategy will apply.

({METHOD, FIELD})
(RUNTIME)
public MapKeyJoinColumns {
MapKeyJoinColumn[] value();
ForeignKey foreignKey() default (PROVIDER_DEFAULT);

Table 34 lists the annotation elements that may be specified for the MapKeyJoinColumns annotation.

Table 34. MapKeyJoinColumns Annotation Elements

Type Name Description Default

MapKeyJoinColumn[] value (Required) The map key join
columns that are used to
map to the entity that is the
map key.

ForeignKey foreignKey (Optional) The foreign key Provider’s default
constraint specification for
the join columns. This is
used only if table generation
is in effect.

11.1.38. MapKeyTemporal Annotation

The MapKeyTemporal annotation is used to specify the temporal type for a map key whose basic type is a temporal type.

The MapKeyTemporal annotation can be applied to an element collection or relationship of type java.util.Map, in
conjunction with the ElementCollection, OneToMany, or ManyToMany annotation. If the map is specified using Java generics,
the MapKeyClass annotation and associated type need not be specified; otherwise they must be specified.

({METHOD, FIELD})
(RUNTIME)
public MapKeyTemporal {
TemporalType value();
}

The MapKeyTemporal enum is deprecated, and its use in newly-written code is strongly discouraged.

Table 35 lists the annotation elements that may be specified for the MapKeyTemporal annotation and their default values.
The TemporalType enum is defined in Section 11.1.54.

271

Table 35. MapKeyTemporal Annotation Elements

Type Name Description Default

TemporalType value (Required) The type used in
mapping java.util.Date or
java.util.Calendar.

11.1.39. MappedSuperclass Annotation

The MappedSuperclass annotation designates a class whose mapping information is applied to the entities that inherit
from it. A mapped superclass has no separate table defined for it.

A class designated with the MappedSuperclass annotation can be mapped in the same way as an entity except that the
mappings will apply only to its subclasses since no table exists for the mapped superclass itself. When applied to the
subclasses the inherited mappings will apply in the context of the subclass tables. Mapping information may be
overridden in such subclasses by using the AttributeOverride, AttributeOverrides, AssociationOverride, and
AssociationOverrides annotations.

(TYPE)
(RUNTIME)
public MappedSuperclass {}

11.1.40. MapsId Annotation

The MapsId annotation is used to designate a ManyToOne or OneToOne relationship attribute that provides the mapping for
an EmbeddedId primary Kkey, an attribute within an EmbeddedId primary key, or a simple primary key of the parent entity.

The value element specifies the attribute within a composite key to which the relationship attribute corresponds. If the
entity’s primary key is of the same Java type as the primary key of the entity referenced by the relationship, the value
attribute is not specified.

({METHOD, FIELD})
(RUNTIME)
public MapsId {
String value() default "";
}

Table 36 lists the annotation elements that may be specified for the MapsId annotation.

Table 36. MapsId Annotation Elements

Type Name Description Default
String value (Optional) The name of the The relationship maps the
attribute within the entity’s primary key.

composite key to which the
relationship attribute
corresponds.

Example:

// parent entity has simple primary key

272

public class Employee {
long empld;
String name;

/] ...
}

// dependent entity uses EmbeddedId for composite key
public class DependentId {

String name;
long empid; // corresponds to PK type of Employee

public class Dependent {
DependentId id;
/] ...
("empid") // maps the empid attribute of embedded id

Employee emp;

11.1.41. OneToMany Annotation

A OneToMany annotation defines a many-valued association with one-to-many multiplicity.
Table 37 lists the annotation elements that may be specified for the OneToMany annotation and their default values.

If the collection is defined using generics to specify the element type, the associated target entity class need not be
specified; otherwise it must be specified.

The OneToMany annotation may be used within an embeddable class contained within an entity class to specify a
relationship to a collection of entities™. If the relationship is bidirectional, the mappedBy element must be used to specify
the relationship field or property of the entity that is the owner of the relationship.

({METHOD, FIELD})
(RUNTIME)
public OneToMany {
(lass targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default LAZY;

String mappedBy() default "";
boolean orphanRemoval() default false;

The operations that can be cascaded are defined by the CascadeType enum, defined in Section 11.1.30.
When the collection is a java.util.Map, the cascade element and the orphanRemoval element apply to the map value.

If orphanRemoval is true and an entity that is the target of the relationship is removed from the relationship (either by
removal from the collection or by setting the relationship to null), the remove operation will be applied to the entity
being orphaned. If the entity being orphaned is a detached, new, or removed entity, the semantics of orphanRemoval do
not apply.

If orphanRemoval is true and the remove operation is applied to the source entity, the remove operation will be cascaded

273

to the relationship target in accordance with the rules of Section 3.3.3, (and hence it is not necessary to specify

cascade=REMOVE for the relationship

7
)

The remove operation is applied at the time of the flush operation. The orphanRemoval functionality is intended for

entities that are privately "owned" by their parent entity. Portable applications must otherwise not depend upon a

specific order of removal, and must not reassign an entity that has been orphaned to another relationship or otherwise

attempt to persist it.

The default mapping for unidirectional one-to-many relationships uses a join table as is described in Section 2.12.5.

Unidirectional one-to-many relationships may be implemented using one-to-many foreign key mappings, using the

JoinColumn and JoinColumns annotations.

Type

Class

CascadeTypel]

FetchType

String

boolean

274

Table 37. OneToMany Annotation Elements

Name

targetEntity

cascade

fetch

mappedBy

orphanRemoval

Description

(Optional) The entity class
that is the target of the
association. Optional only if
the collection-valued
relationship property is
defined using Java generics.
Must be specified otherwise.

(Optional) The operations
that must be cascaded to the
target of the association.

(Optional) Whether the
association should be lazily
loaded or must be eagerly
fetched. The EAGER strategy
is a requirement on the
persistence provider
runtime that the associated
entities must be eagerly
fetched. The LAZY strategy is
a hint to the persistence
provider runtime.

The field or property that
owns the relationship.
Required unless the
relationship is
unidirectional.

(Optional) Whether to apply
the remove operation to
entities that have been
removed from the
relationship and to cascade
the remove operation to
those entities.

Default

The parameterized type of
the collection when defined
using generics.

No operations are cascaded.

LAZY

false

Example 1: One-to-Many association using generics

In Customer class:

(cascade=ALL, mappedBy="customer", orphanRemoval=true)
public Set<Order> getOrders() { return orders; }

In Order class:

(name="CUST_ID", nullable=false)
public Customer getCustomer() { return customer; }

Example 2: One-to-Many association without using generics

In Customer class:

(
targetEntity=com.acme.Order.class,
cascade=ALL,
mappedBy="customer",
orphanRemoval=true

)
public Set getOrders() { return orders; }

In Order class:

(name="CUST_ID", nullable=false)
protected Customer customer;

Example 3: Unidirectional One-to-Many association using a foreign key mapping

In Customer class:

(orphanRemoval=true)
(name="CUST_ID") // join column is in table for Order
public Set<Order> getOrders() { return orders; }

11.1.42. OneToOne Annotation

The OneToOne annotation defines a single-valued association to another entity that has one-to-one multiplicity. It is not
normally necessary to specify the associated target entity explicitly since it can usually be inferred from the type of the
object being referenced.

If the relationship is bidirectional, the mappedBy element must be used to specify the relationship field or property of the
entity that is the owner of the relationship.

The OneToOne annotation may be used within an embeddable class to specify a relationship from the embeddable class
to an entity class. If the relationship is bidirectional and the entity containing the embeddable class is on the owning
side of the relationship, the non-owning side must use the mappedBy element of the OneToOne annotation to specify the
relationship field or property of the embeddable class. The dot (“.”) notation syntax must be used in the mappedBy
element to indicate the relationship attribute within the embedded attribute. The value of each identifier used with the
dot notation is the name of the respective embedded field or property.

Table 38 lists the annotation elements that may be specified for the OneToOne annotation and their default values.

275

({METHOD, FIELD})
(RUNTIME)

public

(lass targetEntity() default void.class;
CascadeType[] cascade() default {};

OneToOne {

FetchType fetch() default EAGER;
boolean optional() default true;

String mappedBy() default "";

boolean orphanRemoval() default false;

The operations that can be cascaded are defined by the CascadeType enum, defined in Section 11.1.30.

If orphanRemoval is true and an entity that is the target of the relationship is removed from the relationship (by setting

the relationship to null), the remove operation will be applied to the entity being orphaned. If the entity being

orphaned is a detached, new, or removed entity, the semantics of orphanRemoval do not apply.

If orphanRemoval is true and the remove operation is applied to the source entity, the remove operation will be cascaded

to the relationship target in accordance with the rules of Section 3.3.3, (and hence it is not necessary to specify
cascade=REMOVE for the relationship)™®.

The remove operation is applied at the time of the flush operation. The orphanRemoval functionality is intended for

entities that are privately "owned" by their parent entity. Portable applications must otherwise not depend upon a

specific order of removal, and must not reassign an entity that has been orphaned to another relationship or otherwise

attempt to persist it.

Type

Class

CascadeTypel]

FetchType

boolean

276

Table 38. OneToOne Annotation Elements

Name

targetEntity

cascade

fetch

optional

Description

(Optional) The entity class
that is the target of the
association.

(Optional) The operations
that must be cascaded to the
target of the association.

(Optional) Whether the
association should be lazily
loaded or must be eagerly
fetched. The EAGER strategy
is a requirement on the
persistence provider
runtime that the associated
entity must be eagerly
fetched. The LAZY strategy is
a hint to the persistence
provider runtime.

(Optional) Whether the
association is optional. If set
to false then a non-null
relationship must always
exist.

Default

The type of the field or
property that stores the
association.

No operations are cascaded.

EAGER

true

Type Name Description Default

String mappedBy (Optional) The field or
property that owns the
relationship. The mappedBy
element is only specified on
the inverse (non-owning)
side of the association.

boolean orphanRemoval (Optional) Whether to apply false
the remove operation to
entities that have been
removed from the
relationship and to cascade
the remove operation to
those entities.

Example 1: One-to-one association that maps a foreign key column.

On Customer class:
(optional=false)

(name="CUSTREC_ID", unique=true, nullable=false, updatable=false)
public CustomerRecord getCustomerRecord() { return customerRecord; }

On CustomerRecord class:

(optional=false, mappedBy="customerRecord")
public Customer getCustomer() { return customer; }

Example 2: One-to-one association where both source and target share the same primary key values.

On Employee class:

public class Employee {
Integer id;
(orphanRemoval=true)
EmployeeInfo info;

/] ...

On Employeelnfo class:

public class Employeelnfo {
Integer id;

/],

Example 3: One-to-one association from an embeddable class to another entity.

277

public class Employee {

int id;

LocationDetails location;

VS

public class LocationDetails {
int officeNumber;
ParkingSpot parkingSpot;

/] ...

public class ParkingSpot {
int id;
String garage;

(mappedBy="1ocation.parkingSpot")
Employee assignedTo;

/] ..

11.1.43. OrderBy Annotation

The OrderBy annotation specifies the ordering the elements of a collection-valued association or element collection are
to have when the association or collection is retrieved.

({METHOD, FIELD})
(RUNTIME)
public OrderBy {
String value() default "";

}

The syntax of the value ordering element is an orderby_list, as follows:

orderby_list ::= orderby_item [,orderby_item]*
orderby_item ::= [property_or_field_name] [ASC | DESC]

If orderby_list is not specified or if ASC or DESC is not specified, ASC (ascending order) is assumed.

If the ordering element is not specified for an entity association, ordering by the primary key of the associated entity is

assumed.™”

A property or field name specified as an orderby_item must correspond to a basic persistent property or field of the
associated class or embedded class within it. The properties or fields used in the ordering must correspond to columns
for which comparison operators are supported.

The dot (".") notation is used to refer to an attribute within an embedded attribute. The value of each identifier used
with the dot notation is the name of the respective embedded field or property.

278

The OrderBy annotation may be applied to an element collection. When OrderBy is applied to an element collection of

basic type, the ordering will be by value of the basic objects and the property_or_field_name is not used.”™ When

specifying an ordering over an element collection of embeddable type, the dot notation must be used to specify the

attribute or attributes that determine the ordering.

The OrderBy annotation is not used when an order column is specified. See Section 11.1.44.

Table 39 lists the annotation elements that may be specified for the OrderBy annotation.

Table 39. OrderBy Annotation Elements

Type Name
String value
Example 1:

public class Course {
/] ...

("lastname ASC")

public List<Student> getStudents() { ... };

/] ..

Example 2:

public class Student {

/] ...
(mappedBy="students")
// PK is assumed
public List<Course> getCourses() { ... };
/] ...
}
Example 3:

public class Person {
/] ...

("zipcode.zip, zipcode.plusFour")
public Set<Address> getResidences() { ... };

/] ...

public class Address {
protected String street;

Description

(Optional) The list of
attributes (optionally
qualified with ASC or DESC)
whose values are used in the
ordering.

Default

Ascending ordering by the
primary key.

279

protected String city;
protected String state;

protected Zipcode zipcode;

public class Zipcode {
protected String zip;
protected String plusFour;

11.1.44. OrderColumn Annotation

The OrderColumn annotation specifies a column that is used to maintain the persistent order of a list. The persistence
provider is responsible for maintaining the order upon retrieval and in the database. The persistence provider is
responsible for updating the ordering upon flushing to the database to reflect any insertion, deletion, or reordering
affecting the list. The OrderColumn annotation may be specified on a one-to-many or many-to-many relationship or on an
element collection. The OrderColumn annotation is specified on the side of the relationship that references the collection

that is to be ordered. The order column is not visible as part of the state of the entity or embeddable class.”"

The OrderBy annotation is not used when OrderColumn is specified.

Table 40 lists the annotation elements that may be specified for the OrderColumn annotation and their default values.

({METHOD, FIELD})
(RUNTIME)
public OrderColumn {
String name() default "";
boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";

String options() default "";

If name is not specified, the column name is the concatenation of the following: the name of the referencing relationship
property or field of the referencing entity or embeddable class; " _"; " ORDER ".

The order column must be of integral type. The persistence provider must maintain a contiguous (non-sparse) ordering
of the values of the order column when updating the association or element collection. The order column value for the
first element of the list must be 0.

Table 40. OrderColumn Annotation Elements

Type Name Description Default
String name (Optional) The name of the The concatenation of the
ordering column. name of the referencing
property or field; " _"; " ORDER
boolean nullable (Optional) Whether the true

database column is nullable.

280

Type Name Description Default

boolean insertable (Optional) Whether the true
column is included in SQL
INSERT statements
generated by the persistence
provider.

boolean updatable (Optional) Whether the true
column is included in SQL
UPDATE statements
generated by the persistence
provider.

String columnDefinition (Optional) The SQL fragment Generated SQL to create a
that is used when generating column of the inferred type.
the DDL for the column.

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.
Example 1:

public class CreditCard {
long ccNumber;
// unidirectional
List<CardTransaction> transactionHistory;

/] ...

Example 2:

public class Course {
/] ...

(name="COURSE_ENROLLMENT")
public Set<Student> getStudents() { ... };
/] ...

// unidirectional

(name="WAIT_LIST")

(name="WAITLIST_ORDER")
public List<Student> getWaitList() { ... }

public class Student {
/] ...

(mappedBy="students")

281

public Set<Course> getCourses() { ... };

/] ...

Example of querying the ordered list:

SELECT w
FROM course ¢ JOIN c.waitlist w
WHERE c.name = "geometry" AND INDEX(w) = 0

11.1.45. PrimaryKeyJoinColumn Annotation

The PrimaryKeyJoinColumn annotation specifies a primary key column that is used as a foreign key to join to another table.

The PrimaryKeyJoinColumn annotation is used to join the primary table of an entity subclass in the JOINED mapping
strategy to the primary table of its superclass; it is used within a SecondaryTable annotation to join a secondary table to a
primary table; and it may be used in a OneToOne mapping in which the primary key of the referencing entity is used as a
foreign key™ to the referenced entity™”.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the primary key join
column when table generation is in effect. If the foreignKey element is not specified, the persistence provider’s default
foreign key strategy will apply.

Table 41 lists the annotation elements that may be specified for the PrimaryKeyJoinColumn annotation and their default
values.

If no PrimaryKeyJoinColumn annotation is specified for a subclass in the JOINED mapping strategy, the foreign key
columns are assumed to have the same names as the primary key columns of the primary table of the superclass.

({TYPE, METHOD, FIELD})
(RUNTIME)
(PrimaryKeyJoinColumns.class)
public PrimaryKeyJoinColumn {
String name() default "";
String referencedColumnName() default "";

String columnDefinition() default "";

String options() default "";
ForeignKey foreignKey() default (PROVIDER_DEFAULT);

Table 41. PrimaryKeyJoinColumn Annotation Elements

282

Type Name
String name
String referencedColumnName

String columnDefinition
String options
ForeignKey foreignKey

Example: Customer and ValuedCustomer subclass

(name="CUST")
(strategy=JOINED)
("CusT")
public class Customer { ... }

Description

(Optional) The name of the
primary key column of the
current table.

(Optional) The name of the
primary key column of the
table being joined to.

(Optional) The SQL fragment
that is used when generating
the DDL for the column. This
should not be specified for a
OneToOne primary key
association.

(Optional) A SQL fragment
appended to the generated
DDL.

(Optional) The foreign key
constraint specification for
the join column. This is used
only if table generation is in
effect.

Default

The same name as the
primary key column of the
primary table of the
superclass (JOINED mapping
strategy); the same name as
the primary key column of
the primary table
(SecondaryTable mapping);
or the same name as the
primary key column for the
table for the referencing
entity (OneToOne mapping).

The same name as the
primary key column of the
primary table of the
superclass (JOINED mapping
strategy); the same name as
the primary key column of
the primary table
(SecondaryTable mapping);
or the same name as the
primary key column of the
table for the referenced
entity (OneToOne mapping).

Generated SQL to create a
column of the inferred type.

Nothing appended.

Provider’s default

283

(name="VCUST")
("veusT")
(name="CUST_ID")
public class ValuedCustomer extends Customer { ... }

11.1.46. PrimaryKeyJoinColumns Annotation

Composite foreign keys are supported by means of the PrimaryKeyJoinColumns annotation. The PrimaryKeyJoinColumns
annotation groups PrimaryKeyJoinColumn annotations.

({TYPE, METHOD, FIELD})
(RUNTIME)
public PrimaryKeyJoinColumns {
PrimaryKeyJoinColumn[] value();
ForeignKey foreignKey() default (PROVIDER_DEFAULT);

The foreignKey element is used to specify or control the generation of a foreign key constraint for the columns
corresponding to the PrimaryKeyJoinColumn elements referenced by the value element when table generation is in effect.
If both this element and the foreignKey element of any of the PrimaryKeyJoinColumn elements are specified, the behavior is
undefined. If no foreignkKey annotation element is specified in either location, the persistence provider’s default foreign
key strategy will apply.

Table 42 lists the annotation elements that may be specified for the PrimaryKeyJoinColumns annotation.

Table 42. PrimaryKeyjoinColumns Annotation Elements

Type Name Description Default

PrimaryKeyJoinColumn(] value (Required) The primary key
join columns.

ForeignKey foreignKey (Optional) The foreign key Provider’s default
constraint specification for
the join columns. This is
used only if table generation
is in effect.

Example 1: ValuedCustomer subclass

(name="VCUST")
("veust")
({
(name="CUST_ID", referencedColumnName="ID"),
(name="CUST_TYPE", referencedColumnName="TYPE")
1))

public class ValuedCustomer extends Customer { ... }

Example 2: OneToOne relationship between Employee and Employeelnfo classes.””

public class EmpPK {
public Integer id;
public String name;

(com.acme.EmpPK.class)

284

public class Employee {

Integer id;

String name;

(

(name="ID", referencedColumnName="EMP_ID"),
(name="NAME", referencedColumnName="EMP_NAME")
9]

EmployeeInfo info;

/1 ...

(com.acme.EmpPK.class)
public class EmployeeInfo {

(name="EMP_ID")
Integer id;

(name="EMP_NAME")
String name;

/] ...

11.1.47. SecondaryTable Annotation

The SecondaryTable annotation is used to specify a secondary table for the annotated entity class.

If no SecondaryTable annotation is specified, it is assumed that all persistent fields or properties of the entity are mapped
to the primary table. Specifying one or more secondary tables indicates that the data for the entity class is stored across
multiple tables.

Table 43 lists the annotation elements that may be specified for the SecondaryTable annotation and their default values.

If no primary key join columns are specified, the join columns are assumed to reference the primary key columns of
the primary table, and have the same names and types as the referenced primary key columns of the primary table.

The foreignKey element is used to specify or control the generation of a foreign key constraint for the columns
corresponding to the pkJoinColumns element when table generation is in effect. If both this element and the foreignKey
element of any of the pkJoinColumns elements are specified, the behavior is undefined. If no foreignKey annotation
element is specified in either location, the persistence provider’s default foreign key strategy will apply.

This annotation may not be applied to a class annotated @MappedSuperclass or @Embeddable.

({TYPE})
(RUNTIME)
(SecondaryTables.class)
public SecondaryTable {
String name();
String catalog() default "";
String schema() default "";
PrimaryKeyJoinColumn[] pkJoinColumns() default {};
ForeignKey foreignKey() default (PROVIDER_DEFAULT);
UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};

285

CheckConstraint[] check() default {}

String comment() default "";

String options() default "";

Type

String

String

String

PrimaryKeyJoinColumn(]

ForeignKey

UniqueConstraint[]

Index[]

CheckConstraint[]

String

286

Table 43. SecondaryTable Annotation Elements

Name

name

catalog

schema

pkJoinColumns

foreignKey

uniqueConstraints

indexes

check

comment

Description

(Required) The name of the
table.

(Optional) The catalog of the
table.

(Optional) The schema of the
table.

(Optional) The columns that
are used to join with the
primary table.

(Optional) The foreign key
constraint for the join
column. This is used only if
table generation is in effect.

(Optional) Unique
constraints that are to be
placed on the table. These
are typically only used if
table generation is in effect.
These constraints apply in
addition to any constraints
specified by the Column and
JoinColumn annotations and
constraints entailed by
primary key mappings.

(Optional) Indexes for the
table. These are only used if
table generation is in effect.

(Optional) Check constraints
for the table. These are only
used if table generation is in
effect.

(Optional) Comment for the
table. This is only used if
table generation is in effect.

Default

Default catalog

Default schema for user

Column(s) of the same
name(s) as the primary key
column(s) in the primary
table

Provider’s default

No additional constraints

No additional indexes

No check constraint

No comment

Type Name Description Default

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.

Example 1: Single secondary table with a single primary key column.

(name="CUSTOMER")

(
name="CUST_DETAIL",
pkJoinColumns= (name="CUST_ID")
)
public class Customer { ... }

Example 2: Single secondary table with multiple primary key columns.

(name="CUSTOMER")

(
name="CUST_DETAIL",

pkJoinColumns={
(name="CUST_ID"),
(name="CUST_TYPE")
9]

public class Customer { ... }

11.1.48. SecondaryTables Annotation

The SecondaryTables annotation can be used to specify multiple secondary tables for an entity.

({TYPE})
(RUNTIME)
public SecondaryTables {
SecondaryTable[] value();
}

Table 44 lists the annotation elements that may be specified for the SecondaryTables annotation.
Table 44. SecondaryTables Annotation Elements

Type Name Description Default

SecondaryTable[] value (Required) The secondary
tables that are used to map
the entity class.

Example 1: Multiple secondary tables assuming primary key columns are named the same in all tables.

(name="EMPLOYEE")
({
(name="EMP_DETAIL"),
(name="EMP_HIST")
9]
public class Employee { ... }

287

Example 2: Multiple secondary tables with differently named primary key columns.

(name="EMPLOYEE")
({
(
name="EMP_DETAIL",
pkJoinColumns= (name="EMPL_ID")),
(
name="EMP_HIST",
pkJoinColumns= (name="EMPLOYEE_ID"))

i)
public class Employee { ... }

11.1.49. SequenceGenerator Annotation

The SequenceGenerator annotation defines a primary key generator that may be referenced by name when a generator
element is specified for the GeneratedValue annotation. A sequence generator may be specified on the entity class or on
the primary key field or property. The scope of the generator name is global to the persistence unit (across all generator
types).

If no name is explicitly specified by the SequenceGenerator annotation, and the annotation occurs on an entity class or
primary key attribute of an entity class, then the name defaults to the name of the entity. Otherwise, if the annotation
occurs elsewhere, the behavior is undefined.

If no name is explicitly specified by the SequenceGenerator annotation, and the annotation occurs on a package
descriptor, then the annotation defines a recipe for producing a default generator when a GeneratedValue annotation of
any program element in the annotated package has strategy=SEQUENCE and a defaulted generator name. The name of this
default generator is the defaulted generator name, and its other properties are determined by the members of the
package-level SequenceGenerator annotation.

Table 45 lists the annotation elements that may be specified for the SequenceGenerator annotation and their default

values.
({TYPE, METHOD, FIELD, PACKAGE})
(RUNTIME)
(SequenceGenerators.class)
public SequenceGenerator {
String name() default "";
String sequenceName() default "";
String catalog() default "";
String schema() default "";
int initialValue() default 1;
int allocationSize() default 50;
String options() default "";
}
Table 45. SequenceGenerator Annotation Elements
Type Name Description Default
String name (Optional) A unique See text above

generator name that can be
referenced by one or more
classes to be the generator
for primary key values.

288

Name

Type

Description

String sequenceName (Optional) The name of the
database sequence object
from which to obtain
primary key values.

String

catalog (Optional) The catalog of the

sequence generator.

String schema (Optional) The schema of the

sequence generator.

int initialValue (Optional) The value from
which the sequence object is

to start generating.

int allocationSize (Optional) The amount to
increment by when
allocating sequence

numbers from the sequence.

String options (Optional) A SQL fragment

appended to the generated
DDL.

Example:

(name="EMP_SEQ", allocationSize=25)

11.1.50. SequenceGenerators Annotation

The SequenceGenerators annotation can be used to specify multiple sequence generators.

({TYPE, METHOD, FIELD, PACKAGE})
(RUNTIME)

public SequenceGenerators {
SequenceGenerator[] value();
}
Table 46. SequenceGenerators Annotation Elements
Type Name Description
SequenceGenerator(] value (Required) The sequence

generator mappings

11.1.51. Table Annotation

Default

A provider-chosen sequence
name

Default catalog

Default schema for user

50

Nothing appended.

Default

The Table annotation specifies the primary table for the annotated entity. Additional tables may be specified by using

the SecondaryTable or SecondaryTables annotation.””

Table 47 lists the annotation elements that may be specified for the Table annotation and their default values.

289

If no Table annotation is specified for an entity class, the default values defined in Table 47 apply.

This annotation may not be applied to a class annotated @MappedSuperclass or @Embeddable.

({TYPE})
(RUNTIME)
public Table {
String name() default
String catalog() defaul
String schema() default

UniqueConstraint[] uniqueConstraints() default {};

Index[] indexes() defau
CheckConstraint[] check
String comment() defaul
String options() defaul

Type

String

String

String

UniqueConstraint[]

Index[]

CheckConstraint[]

String

290

",
’

wn,

t ’
nn,
’

1t {};
() default {}
t Illl;
t llll;

Table 47. Table Annotation Elements

Name

name

catalog

schema

uniqueConstraints

indexes

check

comment

Description

(Optional) The name of the
table.

(Optional) The catalog of the
table.

(Optional) The schema of the
table.

(Optional) Unique
constraints that are to be
placed on the table. These
are only used if table
generation is in effect. These
constraints apply in addition
to any constraints specified
by the Column and
JoinColumn annotations and
constraints entailed by
primary key mappings.

(Optional) Indexes for the
table. These are only used if
table generation is in effect.

(Optional) Check constraints
for the table. These are only
used if table generation is in
effect.

(Optional) Comment for the
table. This is only used if
table generation is in effect.

Default

Entity name

Default catalog

Default schema for user

No additional constraints

No additional indexes

No check constraint

No comment

Type Name Description Default

String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.

Example:

(name="CUST", schema="RECORDS")
public class Customer { ... }

11.1.52. TableGenerator Annotation

The TableGenerator annotation defines a primary key generator that may be referenced by name when a generator
element is specified for the GeneratedValue annotation. A table generator may be specified on the entity class or on the
primary key field or property. The scope of the generator name is global to the persistence unit (across all generator
types).

If no name is explicitly specified by the TableGenerator annotation, and the annotation occurs on an entity class or
primary key attribute of an entity class, then the name defaults to the name of the entity. Otherwise, if the annotation
occurs elsewhere, the behavior is undefined.

If no name is explicitly specified by the TableGenerator annotation, and the annotation occurs on a package descriptor,
then the annotation defines a recipe for producing a default generator when a GeneratedValue annotation of any
program element in the annotated package has strateqy=TABLE and a defaulted generator name. The name of this default
generator is the defaulted generator name, and its other properties are determined by the members of the package-
level TableGenerator annotation.

Table 48 lists the annotation elements that may be specified for the TableGenerator annotation and their default values.

The table element specifies the name of the table that is used by the persistence provider to store generated primary
key values for entities. An entity type will typically use its own row in the table for the generation of primary key
values. The primary key values are normally positive integers.

({TYPE, METHOD, FIELD, PACKAGE})
(RUNTIME)
(TableGenerators.class)
public TableGenerator {
String name() default "";
String table() default "";
String catalog() default "";
String schema() default "";
String pkColumnName() default "";
String valueColumnName() default "";
String pkColumnValue() default "";
int initialValue() default 0;
int allocationSize() default 50;
UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};

String options() default "";

Table 48. TableGenerator Annotation Elements

291

Type

String

String

String

String

String

String

String

int

int

UniqueConstraint[]

292

Name

name

table

catalog

schema

pkColumnName

valueColumnName

pkColumnValue

initialValue

allocationSize

uniqueConstraints

Description

(Optional) A unique
generator name that can be
referenced by one or more
classes to be the generator
for primary key values.

(Optional) Name of table
that stores the generated
primary key values.

(Optional) The catalog of the
table.

(Optional) The schema of the
table.

(Optional) Name of the
primary key column in the
table.

(Optional) Name of the
column that stores the last
value generated.

(Optional) The primary key
value in the generator table
that distinguishes this set of
generated values from
others that may be stored in
the table.

(Optional) The value used to
initialize the column that
stores the last value
generated.

(Optional) The amount to
increment by when
allocating numbers from the
generator.

(Optional) Unique
constraints that are to be
placed on the table. These
are only used if table
generation is in effect. These
constraints apply in addition
to primary key constraints.

Default

See text above

A provider-chosen table
name

Default catalog

Default schema for user

A provider-chosen name

A provider-chosen name

A provider-chosen value to
store in the primary key
column of the generator
table

50

No additional constraints

Type Name Description

Index(] indexes (Optional) Indexes for the
table. These are only used if
table generation is in effect.

String options (Optional) A SQL fragment
appended to the generated
DDL.
Example 1:

public class Employee {
Y/

(
name="empGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="EMP_ID",
allocationSize=1)

(strategy=TABLE, generator="empGen")
int id;

/1 ...

Example 2:

public class Address {
/] ...

(

name="addressGen",
table="ID_GEN",
pkColumnName="GEN_KEY",
valueColumnName="GEN_VALUE",
pkColumnValue="ADDR_ID")

(strategy=TABLE, generator="addressGen")
int 1id;

/] ...

11.1.53. TableGenerators Annotation

The TableGenerators annotation can be used to specify multiple table generators.

({TYPE, METHOD, FIELD, PACKAGE})
(RUNTIME)
public TableGenerators {
TableGenerator[] value();
}

Table 49. TableGenerators Annotation Elements

Default

No additional indexes

Nothing appended.

293

Type Name Description Default

TableGenerator(] value (Required) The table
generator mappings

11.1.54. Temporal Annotation

The Temporal annotation must be specified for persistent fields or properties of type java.util.Date and
java.util.Calendar unless a converter is being applied. It may only be specified for fields or properties of these types.

The Temporal annotation may be used in conjunction with the Basic annotation, the Id annotation, or the

~[26]

"ElementCollection " annotation (when the element collection value is of such a temporal type).

The TemporalType enum defines the mapping for these temporal types.

public enum TemporalType {
DATE, //java.sql.Date
TIME, //java.sql.Time
TIMESTAMP //java.sql.Timestamp

}
({METHOD, FIELD})
(RUNTIME)
public Temporal {
TemporalType value();
}

The Temporal annotation and TemporalType enum are deprecated, and their use in newly-written code is strongly
discouraged.

Table 50 lists the annotation elements that may be specified for the Temporal annotation and their default values.

Table 50. Temporal Annotation Elements

Type Name Description Default

TemporalType value (Required) The type used in
mapping java.util.Date or
java.util.Calendar.

Example:

public class EmploymentPeriod {
(DATE)
java.util.Date startDate;

(DATE)
java.util.Date endDate;

/] ...

11.1.55. Transient Annotation

The Transient annotation is used to annotate a property or field of an entity class, mapped superclass, or embeddable
class. It specifies that the property or field is not persistent.

294

({METHOD, FIELD})
(RUNTIME)
public Transient {}

Example:

public class Employee {

int id;

User currentUser;

/] ...

11.1.56. UniqueConstraint Annotation

The UniqueConstraint annotation is used to specify that a unique constraint is to be included in the generated DDL for a
primary or secondary table.

Table 51 lists the annotation elements that may be specified for the UniqueConstraint annotation.

H»H
(RUNTIME)
public UniqueConstraint {
String name() default "";
String[] columnNames();

String options() default "";

}
Table 51. UniqueConstraint Annotation Elements
Type Name Description Default
String name (Optional) Constraint name. A provider-chosen name.
String(] columnNames (Required) An array of the
column names that make up
the constraint.
String options (Optional) A SQL fragment Nothing appended.
appended to the generated
DDL.
Example:
(
name="EMPLOYEE",
uniqueConstraints= (columnNames={"EMP_ID", "EMP_NAME"})
)

public class Employee { ... }

295

11.1.57. Version Annotation

The Version annotation declares the version field or property of an entity class, as defined in Section 2.5. The version is
used to ensure integrity when performing the merge operation, and for optimistic concurrency control, as specified in
Section 3.5.2.

The Version field or property should be mapped to the primary table of the entity; an application which maps the
Version property to a table other than the primary table is not portable.

({METHOD, FIELD})
(RUNTIME)
public Version {}

Example:

(name="0PTLOCK")
protected int getVersionNum() { return versionNum; }

11.2. Object/Relational Metadata Used in Schema Generation

The following annotations and XML elements define or control the generation of database objects. If schema
generation is in effect, the persistence provider must observe the mapping information specified by these annotations
and their corresponding XML elements. Unless otherwise specified, all elements of these annotations are observed in
the schema generation process.

* CollectionTable

e Column

* DiscriminatorColumn
* EmbeddedId

e Enumerated, MapKeyEnumerated
* ForeignKey

* GeneratedValue

° Id

e Index

* Inheritance

* JoinColumn

* JoinTable

e Lob

e MapKeyColumn

* MapKeyJoinColumn

e OrderColumn

* PrimaryKeyJoinColumn
e SecondaryTable

* SequenceGenerator

* Table

e TableGenerator

e Temporal, MapKeyTemporal

* UniqueConstraint

296

¢ Version

In some cases, these annotations and elements may be specified explicitly, while in other cases they may be implied by
the default values of other annotations or elements. For example, by default a table is generated corresponding to an
entity and bears the same name as that assigned to the entity (which in turn may have been defaulted from the name
of the entity class).

The naming of database objects is determined by the defaulting rules and the explicit names used in annotations
and/or XML. The names of database objects must be treated in conformance with the requirements of Section 2.15.

The metadata annotations and corresponding XML elements that result in generated objects are as follows.

11.2.1. Table-level elements

The following annotations (and corresponding XML elements) specify the creation of tables. The rules for their naming,
columns, and other properties are defined in the referenced sections of this specification:

11.2.1.1. Table

By default, a table is created for every top-level entity and, by default, includes columns corresponding to the basic and
embedded attributes of the entity and the foreign keys to the tables of related entities. These columns include columns
that result from the use of mapped superclasses, if any. The SecondaryTable annotation, in conjunction with the use of
the table element of the Column and JoinColumn annotations, is used to override this mapping to partition the state of an
entity across multiple tables.

The mapping of the columns of a table is controlled by the Column and JoinColumn annotations. When entity state is
inherited from a mapped superclass, the AttributeOverride and AssociationOverride annotations may be used to further
control the column-level mapping of inherited state. The ordering of the columns is not defined by this specification.
When it is desirable to control the ordering of columns, DDL scripts should be provided.

See Section 11.1.50 for additional rules that apply to the generation of tables. For the treatment of column-level
mappings, see further below.

11.2.1.2. Inheritance

The Inheritance annotation defines the inheritance strategy for an entity hierarchy. The inheritance strategy determines
whether the table for a top-level entity includes columns for entities that inherit from the entity and whether it
includes a discriminator column, or whether separate tables are created for each entity type that inherits from the top-
level entity. See Section 2.14 and Section 11.1.25 for rules pertaining to the treatment of entity inheritance.

11.2.1.3. SecondaryTable

A secondary table is created to partition the mapping of entity state across multiple tables. See Section 11.1.47 for the
rules that apply to the generation of secondary tables.

11.2.1.4. CollectionTable

A collection table is created for the mapping of an element collection. See Section 11.1.8 for the rules that apply to the
generation of collection tables. The Column, AttributeOverride, and AssociationOverride annotations may be used to
override CollectionTable mappings, as described in Section 11.1.9, Section 11.1.4, and Section 11.1.2 respectively.

297

11.2.1.5. JoinTable

By default, join tables are created for the mapping of many-to-many relationships and unidirectional one-to-many
relationships. See Section 2.12.4, Section 2.12.5.1, and Section 2.12.5.2 for the defaults that apply in such cases. Join
tables may also be used to map bidirectional many-to-one/one-to-many associations, unidirectional many-to-one
relationships, and one-to-one relationships (both bidirectional and unidirectional). See Section 11.1.28 for the rules that
apply to the generation of join tables. The AssociationOverride annotation may be used to override join table mappings.

11.2.1.6. TableGenerator

Table generator tables are used to store generated primary key values. See Section 11.1.52 for the rules pertaining to
table generators.

11.2.2. Column-level elements

The following annotations and corresponding XML elements control the mapping of columns in generated tables.

The exact mapping of Java language types to database-specific types is not defined by this specification, as databases
vary in the specific types that they support. In general, however, an implementation of this specification should
conform to the “Standard Mapping from Java Types to JDBC Types” as defined by the JDBC specification [3]. Unless
otherwise explicitly specified, however, VARCHAR and VARBINARY mappings should be used in preference to CHAR
and BINARY mappings. Applications that are sensitive to the exact database mappings that are generated should use
the columnDefinition element of the Column annotation or include DDL files that specify how the database schema is to be
generated.

11.2.2.1. Column

The following elements of the Column annotation are used in schema generation:

® name

* unique

* nullable

e columnDefinition

* table

¢ length (string-valued columns only)

* precision (exact numeric (decimal/numeric) columns only)

* scale (exact numeric (decimal/numeric) columns only)
See Section 11.1.9 for the rules that apply to these elements and column creation. The AttributeOverride annotation may

be used to override column mappings.

11.2.2.2. MapKeyColumn

The MapKeyColumn annotation specifies the mapping for a key column of a map when the key is of basic type. The
following elements of the MapKeyColumn annotation are used in schema generation:

* name
* unique
e nullable

e columnDefinition

298

* table
¢ length (string-valued columns only)
* precision (exact numeric (decimal/numeric) columns only)

* scale (exact numeric (decimal/numeric) columns only)
See Section 11.1.34 for the rules that apply to these elements and map key column creation. The AttributeOverride

annotation may be used to override map key column mappings.

11.2.2.3. Enumerated, MapKeyEnumerated

The Enumerated and MapKeyEnumerated annotations control whether string- or integer-valued columns are generated for
basic attributes of enumerated types and therefore impact the default column mappings for these types. See Section
11.1.18 and Section 11.1.35. The Column and MapKeyColumn annotations may be used to further control the column
mappings for attributes of enumerated types.

11.2.2.4. Temporal, MapKeyTemporal

The Temporal and MapKeyTemporal annotations control whether date-, time-, or timestamp-value columns are generated for
basic attributes of temporal types, and therefore impact the default column mappings for these types. See Section
11.1.54 and Section 11.1.38. The Column and MapKeyColumn annotations may be used to further control the column
mappings for attributes of temporal types.

11.2.2.5. Lob

The Lob annotation specifies that a persistent attribute is to be persisted to a database large object type. See Section
11.1.29. In general, however, the treatment of the Lob annotation is provider-dependent. Applications that are sensitive
to the exact mapping that is used should use the columnDefinition element of the Column annotation or include DDL files
that specify how the database schema is to be generated.

11.2.2.6. OrderColumn

The OrderColumn annotation specifies the generation of a column that is used to maintain the persistent ordering of a list
that is represented in an element collection, one-to-many, or many-to-many relationship.

The following elements of the OrderColumn annotation are used in schema generation:

* name
e nullable

e columnDefinition
See Section 11.1.44 for the rules that pertain to the generation of order columns.
11.2.2.7. DiscriminatorColumn

A discriminator column is generated for the SINGLE_TABLE mapping strategy and may optionally be generated by the
provider for use with the JOINED inheritance strategy. The DiscriminatorColumn annotation may be used to control the
mapping of the discriminator column. See Section 11.1.12 for the rules that pertain to discriminator columns.

11.2.2.8. Version

The Version annotation specifies the generation of a column to serve as an entity’s optimistic lock. See Section 11.1.57

299

for rules that pertain to the version column. The Column annotation may be used to further control the column mapping
for a version attribute.

11.2.3. Primary Key mappings

Primary keys may be represented by basic or embedded attributes and/or may correspond to foreign key attributes.
The Id and EmbeddedId annotations define attributes whose corresponding columns are the constituents of database
primary keys.

11.2.3.1. 1d

The Id annotation (which may be used used in conjunction with the IdClass annotation) is used to specify attributes
whose database columns correspond to a primary key. Use of the Id annotation results in the creation of a primary key
consisting of the corresponding column or columns. Rules for the Id annotation are described in Section 11.1.22 and
Section 2.4.

The Column annotation may be used to further control the column mapping for an Id attribute that is applied to a basic
type. If the Id column was defined in a mapped superclass, the AttributeOverride annotation may be used to control the
column mapping.

The JoinColumn annotation may be used to further control the column mappings for an Id attribute that is applied to a
relationship that corresponds to a foreign key. If the Id attribute was defined in a mapped superclass, the
AssociationOverride annotation may be used to control the column mapping.

11.2.3.2. EmbeddedId

The EmbeddedId annotation specifies an embedded attribute whose corresponding columns correspond to a database
primary key. Use of the EmbeddedId annotation results in the creation of a primary key consisting of the corresponding
columns. Rules for the EmbeddedId annotation are described in Section 11.1.17 and Section 2.4.

The Column annotation may be used to control the column mapping for an embeddable class. If the EmbeddedId attribute is
defined in a mapped superclass, the AttributeOverride annotation may be used to control the column mappings.

If an EmbeddedId attribute corresponds to a relationship attribute, the MapsId annotation must be used, and the column
mapping is determined by the join column for the relationship. See Section 2.4.2.

11.2.3.3. GeneratedValue

The GeneratedValue annotation indicates a primary key whose value is to be generated by the provider. If a strategy is
indicated, the provider must use it if it is supported by the target database. Note that specification of the AUTO strategy
may result in the provider creating a database object for Id generation (e.g., a database sequence). Rules for the
GeneratedValue annotation are described in Section 11.1.21. The GeneratedValue annotation may only be portably used for
simple (i.e., non-composite) primary keys.

11.2.4. Foreign Key Column Mappings

11.2.4.1. JoinColumn

The JoinColumn annotation is typically used in specifying a foreign key mapping. In general, the foreign key definitions
created will be provider-dependent and database-dependent. Applications that are sensitive to the exact mapping that
is used should use the foreignKey element of the JoinColumn annotation or include DDL files that specify how the
database schemas are to be generated.

300

The following elements of the JoinColumn annotation are used in schema generation:

* name
* referencedColumnName
° unique

* nullable

* columnDefinition

* table

e foreignKey

See Section 11.1.26 for rules that apply to these elements and join column creation, and sections Section 2.12 and
Section 11.1.8 for the rules that apply for the default mappings of foreign keys for relationships and element
collections. The AssociationOverride annotation may be used to override relationship mappings. The PrimaryKeyJoinColumn
annotation is used to join secondary tables and may be used in the mapping of one-to-one relationships. See Section
11.2.4.3 below.

11.2.4.2. MapKeyJoinColumn

The MapKeyJoinColumn annotation is to specify foreign key mappings to entities that are map keys in map-valued element
collections or relationships. In general, the foreign key definitions created should be expected to be provider-
dependent and database-dependent. Applications that are sensitive to the exact mapping that is used should use the
foreignKey element of the MapKeyJoinColumn annotation or include DDL files that specify how the database schemas are to
be generated.

The following elements of the MapKeyJoinColumn annotation are used in schema generation:

* name
e referencedColumnName
* unique

* nullable

e columnDefinition

e table

* foreignKey

See Section 11.1.36 for rules that apply to these elements and map key join column creation. The AssociationOverride
annotation may be used to override such mappings.

11.2.4.3. PrimaryKeyJoinColumn

The PrimaryKeyJoinColumn annotation specifies that a primary key column is to be used as a foreign key. This annotation
is used in the specification of the JOINED mapping strategy and for joining a secondary table to a primary table in a
OneToOne relationship mapping. In general, the foreign key definitions created should be expected to be provider-
dependent and database-dependent. Applications that are sensitive to the exact mapping that is used should use the
foreignKey element of the PrimaryKeyJoinColumn annotation or include DDL files that specify how the database schemas
are to be generated. See Section 11.1.45 for rules pertaining to the PrimaryKeyJoinColumn annotation.

11.2.4.4. ForeignKey

The ForeignKey annotation may be used within the JoinColumn, JoinColumns, MapKeyJoinColumn, MapKeyJoinColumns,
PrimaryKeyJoinColumn, PrimaryKeyJoinColumns, CollectionTable, JoinTable, SecondaryTable, and AssociationOverride annotations

301

to specify or override a foreign key constraint. See Section 11.1.20.

11.2.5. Other Elements

11.2.5.1. SequenceGenerator

The SequenceGenerator annotation creates a database sequence to be used for Id generation. The use of generators is
limited to those databases that support them. See Section 11.1.49.

11.2.5.2. Index

The Index annotation generates an index consisting of the specified columns. The ordering of the names in the
columnList element specified in the Index annotation must be observed by the provider when creating the index. See
Section 11.1.24.

11.2.5.3. UniqueConstraint

The UniqueConstraint annotation generates a unique constraint for the given table. Databases typically implement
unique constraints by creating unique indexes. The ordering of the columnNames specified in the UniqueConstraint
annotation must be observed by the provider when creating the constraint. See Section 11.1.56. The unique element of
the Column, JoinColumn, MapKeyColumn, and MapKeyJoinColumn annotations is equivalent to the use of the UniqueConstraint
annotation when only one column is to be included in the constraint.

11.3. Examples of the Application of Annotations for Object/Relational Mapping

This example shows some simple mappings:

public class Customer {
(strategy = AUTO)
Long id;
protected int version;

Address address;

String description;

(targetEntity = com.acme.Order.class,
mappedBy = "customer")
Collection orders = new Vector();

(mappedBy = "customers")
Set<DeliveryService> serviceOptions = new HashSet();

public Long getId() {
return id;

}
public Address getAddress() {
return address;

}

public void setAddress(Address addr) {

302

this.address = addr;

}

public String getDescription() {
return description;

}

public void setDescription(String desc) {
this.description = desc;

}

public Collection getOrders() {
return orders;

}

public Set<DeliveryService> getServiceOptions() {
return serviceOptions;
}
}

EEntity

public class Address {
private Long id;
private int version;
private String street;

@Id
@GeneratedValue(strategy = AUTO)
public Long getId() {

return id;

}

protected void setId(Long id) {
this.id = id;
}

@Version
public int getVersion() {
return version;

}

protected void setVersion(int version) {
this.version = version;

}

public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;
b
}

EEntity

public class Order {
private Long id;
private int version;
private String itemName;
private int quantity;
private Customer cust;

@Id
@GeneratedValue(strategy = AUTO)
public Long getId() {

return id;

}
303

304

public void setId(Long id) {
this.id = id;
}

@Version
protected int getVersion() {
return version;

}

protected void setVersion(int version) {
this.version = version;

}

public String getItemName() {
return itemName;

}

public void setItemName(String itemName) {
this.itemName = itemName;

}

public int getQuantity() {
return quantity;

}

public void setQuantity(int quantity) {
this.quantity = quantity;
}

@ManyToOne
public Customer getCustomer() {
return cust;

}

public void setCustomer(Customer cust) {
this.cust = cust;
}
}

@Entity

@Table(name = "DLVY_SVC")

public class DeliveryService {
private String serviceName;
private int priceCategory;
private Collection customers;

@eId
public String getServiceName() {
return serviceName;

}

public void setServiceName(String serviceName) {
this.serviceName = serviceName;

}

public int getPriceCategory() {
return priceCategory;

}

public void setPriceCategory(int priceCategory) {
this.priceCategory = priceCategory;

}

@ManyToMany(targetEntity = com.acme.Customer.class)
@JoinTable(name = "CUST_DLVRY")
public Collection getCustomers() {

return customers;

}

public setCustomers(Collection customers) {
this.customers = customers;

}

Next, we have a more complex example:

/***%% Employee class *****/
@Entity
@Table(name = "EMPL")
@SecondaryTable(name = "EMP_SALARY",
pkJoinColumns = @PrimaryKeyJoinColumn(name = "EMP_ID", referencedColumnName = "ID"))
public class Employee implements Serializable {
private Long id;
private int version;
private String name;
private Address address;
private Collection phoneNumbers;
private Collection<Project> projects;
private Long salary;
private EmploymentPeriod period;

@Id
@GeneratedValue(strategy = TABLE)
public Integer getId() {

return id;

}

protected void setId(Integer id) {
this.id = id;
}

@Version
@Column(name = "EMP_VERSION", nullable = false)
public int getVersion() {

return version;

}

protected void setVersion(int version) {
this.version = version;

}

@Column(name = "EMP_NAME", length = 80)
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

@ManyToOne(cascade = PERSIST, optional = false)
@JoinColumn(name = "ADDR_ID", referencedColumnName = "ID", nullable = false)
public Address getAddress() {

return address;

}

public void setAddress(Address address) {
this.address = address;

}

@0neToMany(targetEntity = com.acme.PhoneNumber.class,
cascade = ALL,

305

mappedBy = "employee")
public Collection getPhoneNumbers() {
return phoneNumbers;

}

public void setPhoneNumbers(Collection phoneNumbers) {
this.phoneNumbers = phoneNumbers;

}

@ManyToMany(cascade = PERSIST, mappedBy = "employees")
@JoinTable(
name = "EMP_PROJ",
joinColumns = @JoinColumn(name = "EMP_ID", referencedColumnName = "ID"),
inverseJoinColumns = @JoinColumn(name = "PROJ_ID", referencedColumnName = "ID"))
public Collection<Project> getProjects() {
return projects;

}

public void setProjects(Collection<Project> projects) {
this.projects = projects;

}

@Column(name = "EMP_SAL", table = "EMP_SALARY")
public Long getSalary() {
return salary;

}

public void setSalary(Long salary) {
this.salary = salary;

}

©@Embedded
@AttributeOverrides({
@AttributeOverride(name = "startDate",
column = @Column(name
@AttributeOverride(name = "endDate",
column = @Column(name = "EMP_END"))

"EMP_START")),

}
public EmploymentPeriod getEmploymentPeriod() {

return period;

}

public void setEmploymentPeriod(EmploymentPeriod period) {
this.period = period;
}
}

J¥***% Nddress class ***¥**/
@Entity
public class Address implements Serializable {
private Integer id;
private int version;
private String street;
private String city;

@Id
@GeneratedValue(strategy = IDENTITY)
public Integer getId() {

return id;

}

protected void setId(Integer id) {
this.id = id;

}

@Version
@Column(name = "VERS", nullable = false)

306

public int getVersion() {
return version;

}

protected void setVersion(int version) {
this.version = version;

}

@Column(name = "RUE")
public String getStreet() {
return street;

}

public void setStreet(String street) {
this.street = street;

}

@Column(name = "VILLE")
public String getCity() {
return city;

}

public void setCity(String city) {
this.city = city;
}
}

/****% PhoneNumber class *****/

@Entity

@Table(name = "PHONE")

public class PhoneNumber implements Serializable {
private String number;
private int phoneType;
private Employee employee;

@Id
public String getNumber() {
return number;

}

public void setNumber(String number) {
this.number = number;

}

@Column(name = "PTYPE")
public int getPhonetype() {
return phonetype;

}

public void setPhoneType(int phoneType) {
this.phoneType = phoneType;
}

@ManyToOne(optional = false)
@JoinColumn(name = "EMP_ID", nullable = false)
public Employee getEmployee() {

return employee;

}

public void setEmployee(Employee employee) {
this.employee = employee;
}
}

/¥***% Project class *****/
EEntity
@Inheritance(strategy = JOINED)

307

@DiscriminatorValue("Proj")
@DiscriminatorColumn(name = "DISC")
public class Project implements Serializable {
private Integer projId;
private int version;
private String name;
private Set<Employee> employees;

@Id
@GeneratedValue(strategy = TABLE)
public Integer getId() {

return projId;

}

protected void setId(Integer id) {
this.projId = id;
}

@Version
public int getVersion() {
return version;

}

protected void setVersion(int version) {
this.version = version;

}

@Column(name = "PROJ_NAME")
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

@ManyToMany(mappedBy = "projects")
public Set<Employee> getEmployees() {
return employees;

}

public void setEmployees(Set<Employee> employees) {
this.employees = employees;
}
}

/***** GovernmentProject subclass *****/
@Entity
@Table(name = "GOVT_PROJECT")
@DiscriminatorValue("GovtProj")
@PrimaryKeyJoinColumn(name = "GOV_PROJ_ID", referencedColumnName = "ID")
public class GovernmentProject extends Project {
private String filelnfo;

@Column(name = "INFO")
public String getFileInfo() {
return filelnfo;

}

public void setFileInfo(String fileInfo) {
this.fileInfo = filelInfo;
}
}

/****% CovertProject subclass *****/
EEntity
@Table(name = "C_PROJECT")

308

("CovProj")
(name = "COV_PROJ_ID", referencedColumnName = "ID")
public class CovertProject extends Project {
private String classified;

public CovertProject() {
super();

}

public CovertProject(String classified) {
this();
this.classified = classified;

(updatable = false)
public String getClassified() {
return classified;

}

protected void setClassified(String classified) {
this.classified = classified;
ks
}

/***** EmploymentPeriod class *****/

public class EmploymentPeriod implements Serializable {
private Date start;
private Date end;

(nullable = false)
public Date getStartDate() {
return start;

}

public void setStartDate(Date start) {
this.start = start;

}

public Date getEndDate() {
return end;

}

public void setEndDate(Date end) {
this.end = end;

}

[1] The use of map keys that contain embeddables that reference entities is not permitted.

[2] Note that either the joinColumns element or the joinTable element of the AssociationOverride annotation is specified for
overriding a given relationship (but never both).

[3] The combination of inheritance strategies within a single entity inheritance hierarchy is not defined by this
specification.

[4] If it is not specified, the rules of Section 2.10 apply.

[5] If the embeddable class is used as a primary key, the EmbeddedId rather than the Embedded annotation is used.
[6] Use of the Embedded annotation is not required. See Section 2.10.

[7] Note that the Id annotation is not used in the embeddable class.

[8] If the element collection is a Map, this applies to the map value.

[9] Mapping of stateful enum values is not supported.

[10] Portable applications should not use the GeneratedValue annotation on other persistent fields or properties.

309

[11] Note that SEQUENCE and IDENTITY are not portable across all databases.

[12] A primary key with a type not listed is not portable.

[13] In general, floating point types should never be used in primary keys.

[14] If the element collection is a Map, this applies to the map value.

[15] The ManyToMany annotation must not be used within an embeddable class used in an element collection.
[16] The OneToMany annotation must not be used within an embeddable class used in an element collection.

[17] If the parent is detached or new or was previously removed before the orphan was associated with it, the remove
operation is not applied to the entity being orphaned.

[18] If the parent is detached or new or was previously removed before the orphan was associated with it, the remove
operation is not applied to the entity being orphaned.

[19] If the primary key is a composite primary key, the precedence of ordering among the attributes within the primary
key is not futher defined. To assign such a precedence within these attributes, each of the individual attributes must be
specified as an orderby_item.

[20] In all other cases when OrderBy is applied to an element collection, the property_or_field_name must be specified.

[21] The OrderBy annotation should be used for ordering that is visible as persistent state and maintained by the
application.

[22] It is not expected that a database foreign key be defined for the OneToOne mapping, as the OneToOne relationship
may be defined as “optional=true”.

[23] The derived id mechanisms described in Section 2.4.2.1 are now to be preferred over PrimaryKeyJoinColumn for
the OneToOne mapping case.

[24] Note that the derived identity mechanisms described in Section 2.4.2.1 is now preferred to the use of
PrimaryKeyJoinColumn for this case.

[25] When a joined inheritance strategy is used, the Table annotation is used to specify a primary table for the subclass-
specific state if the default is not used.

[26] If the element collection is a Map, this applies to the map value.

310

Chapter 12. XML Object/Relational Mapping Descriptor

The XML object/relational mapping descriptor serves as both an alternative to and an overriding mechanism for Java
language metadata annotations.

12.1. Use of the XML Descriptor

The XML schema for the object relational/mapping descriptor is contained in Section 12.3. The root element of this
schema is the entity-mappings element. The absence or present of the xml-mapping-metadata-complete subelement
contained in the persistence-unit-defaults subelement of the entity-mappings element controls whether the XML
object/relational mapping descriptor is used to selectively override annotation values or whether it serves as a
complete alternative to Java language metadata annotations.

If the xml-mapping-metadata-complete subelement is specified, the complete set of mapping metadata for the persistence
unit is contained in the XML mapping files for the persistence unit, and any persistence annotations on the classes are
ignored.

If xml-mapping-metadata-complete is specified and XML elements are omitted, the default values apply. These default
values are the same as the corresponding defaults when annotations are used, except in the cases specified in Section
12.2 below. When the xml-mapping-metadata-complete element is specified, any metadata-complete attributes specified
within the entity, mapped-superclass, and embeddable elements are ignored.

If the xml-mapping-metadata-complete subelement is not specified, the XML descriptor overrides the values set or defaulted
by the use of annotations, as described below.

The mapping files used by the application developer must conform to the XML schema defined in Section 12.3 or to the
previous versions of the XML schema, orm_3_1.xsd, orm_3_0.xsd or orm_2_2.xsd, defined in a previous version of this
specification [1] in accordance with the version specified by the orm.xml file.

The Jakarta Persistence persistence provider may support use of older versions of the object/relational mapping
schema as well as the object/relational mapping schema defined in Section 12.3, whether singly or in combination
when multiple mapping files are used.

12.2. XML Overriding Rules

This section defines the rules that apply when the XML descriptor is used to override annotations, and the rules
pertaining to the interaction of XML elements specified as subelements of the persistence-unit-defaults, entity-mappings,
entity, mapped-superclass, and embeddable elements.

12.2.1. persistence-unit-defaults Subelements

12.2.1.1. schema

The schema subelement applies to all entities, tables, secondary tables, join tables, collection tables, table generators, and
sequence generators in the persistence unit.

The schema subelement is overridden by any schema subelement of the entity-mappings element; any schema element
explicitly specified in the Table or SecondaryTable annotation on an entity or any schema attribute on any table or
secondary-table subelement defined within an entity element; any schema element explicitly specified in a TableGenerator
annotation or table-generator subelement; any schema element explicitly specified in a SequenceGenerator annotation or
sequence-generator subelement; any schema element explicitly specified in a JoinTable annotation or join-table
subelement; and any schema element explicitly specified in a CollectionTable annotation or collection-table subelement.

311

12.2.1.2. catalog

The catalog subelement applies to all entities, tables, secondary tables, join tables, collection tables, table generators,
and sequence generators in the persistence unit.

The catalog subelement is overridden by any catalog subelement of the entity-mappings element; any catalog element
explicitly specified in the Table or SecondaryTable annotation on an entity or any catalog attribute on any table or
secondary-table subelement defined within an entity XML element; any catalog element explicitly specified in a
TableGenerator annotation or table-generator subelement; any catalog element explicitly specified in a SequenceGenerator
annotation or sequence-generator subelement; any catalog element explicitly specified in a JoinTable annotation or join-
table subelement; and any catalog element explicitly specified in a CollectionTable annotation or collection-table
subelement.

12.2.1.3. delimited-identifiers

The delimited-identifiers subelement applies to the naming of database objects, as described in Section 2.15. It specifies
that all database table-, schema-, and column-level identifiers in use for the persistence unit be treated as delimited
identifiers.

The delimited-identifiers subelement cannot be overridden in this release.

12.2.1.4. access

The access subelement applies to all managed classes in the persistence unit.

The access subelement is overridden by the use of any annotations specifying mapping information on the fields or
properties of the entity class; by any Access annotation on the entity class, mapped superclass, or embeddable class; by
any access subelement of the entity-mappings element; by any Access annotation on a field or property of an entity class,
mapped superclass, or embeddable class; by any access attribute defined within an entity, mapped-superclass, or
embeddable XML element, or by any access attribute defined within an id, embedded-1d, version, basic, embedded, many-to-one,

one-to-one, one-to-many, many-to-many, or element-collection element.

12.2.1.5. cascade-persist

The cascade-persist subelement applies to all relationships in the persistence unit.

Specifying this subelement adds the cascade persist option to all relationships in addition to any settings specified in
annotations or XML.

The cascade-persist subelement cannot be overridden in this release.

0 The ability to override the cascade-persist of the persistence-unit-defaults element will be added in a
future release of this specification.

12.2.1.6. entity-listeners

The entity-listeners subelement defines default entity listeners for the persistence unit. These entity listeners are
called before any other entity listeners for an entity unless the entity listener order is overridden within a mapped-
superclass or entity element, or the ExcludeDefaultListeners annotation is present on the entity or mapped superclass or
the exclude-default-listeners subelement is specified within the corresponding entity or mapped-superclass XML element.

312

12.2.2. Other Subelements of the entity-mappings element

12.2.2.1. package

The package subelement specifies the package of the classes listed within the subelements and attributes of the same
mapping file only. The package subelement is overridden if the fully qualified class name is specified for a class and the
two disagree.

12.2.2.2. schema

The schema subelement applies only to the entities, tables, secondary tables, join tables, collection tables, table
generators, and sequence generators listed within the same mapping file.

The schema subelement is overridden by any schema element explicitly specified in the Table, SecondaryTable, JoinTable, or
CollectionTable annotation on an entity listed within the mapping file or any schema attribute on any table or secondary-
table subelement defined within the entity element for such an entity, or by any schema attribute on any join-table or
collection-table subelement of an attribute defined within the attributes subelement of the entity element for such an
entity, or by the schema attribute of any table-generator or sequence-generator element within the mapping file.

12.2.2.3. catalog

The catalog subelement applies only to the entities, tables, secondary tables, join tables, collection tables, table
generators, and sequence generators listed within the same mapping file.

The catalog subelement is overridden by any catalog element explicitly specified in the Table, SecondaryTable , JoinTable,
or CollectionTable annotation on an entity listed within the mapping file or any catalog attribute on any table or
secondary-table subelement defined within the entity element for such an entity, or by any catalog attribute on any join-
table or collection-table subelement of an attribute defined within the attributes subelement of the entity element for
such an entity, or by the catalog attribute of any table-generator or sequence-generator element within the mapping file.

12.2.2.4. access

The access subelement applies to the managed classes listed within the same mapping file.

The access subelement is overridden by the use of any annotations specifying mapping information on the fields or
properties of the entity class; by any Access annotation on the entity class, mapped superclass, or embeddable class; by
any Access annotation on a field or property of an entity class, mapped superclass, or embeddable class; by any access
attribute defined within an entity, mapped-superclass, or embeddable XML element, or by any access attribute defined
within an id, embedded-1id, version, basic, embedded, many-to-one, one-to-one, one-to-many, many-to-many, or element-collection

element.

12.2.2.5. sequence-generator

The generator defined by the sequence-generator subelement applies to the persistence unit. It is undefined if multiple
mapping files for the persistence unit contain generators of the same name.

The generator defined is added to any generators defined in annotations. If a generator of the same name is defined in
annotations, the generator defined by this subelement overrides that definition.

12.2.2.6. table-generator

The generator defined by the table-generator subelement applies to the persistence unit. It is undefined if multiple

313

mapping files for the persistence unit contain generators of the same name.
The generator defined is added to any generators defined in annotations. If a generator of the same name is defined in

annotations, the generator defined by this subelement overrides that definition.

12.2.2.7. named-query

The named query defined by the named-query subelement applies to the persistence unit. It is undefined if multiple
mapping files for the persistence unit contain named queries of the same name.

The named query defined is added to the named queries defined in annotations. If a named query of the same name is

defined in annotations, the named query defined by this subelement overrides that definition.

12.2.2.8. named-native-query

The named native query defined by the named-native-query subelement applies to the persistence unit. It is undefined if
multiple mapping files for the persistence unit contain named queries of the same name.

The named native query defined is added to the named native queries defined in annotations. If a named query of the

same name is defined in annotations, the named query defined by this subelement overrides that definition.

12.2.2.9. named-stored-procedure-query

The named stored procedure query defined by the named-stored-procedure-query subelement applies to the persistence
unit. It is undefined if multiple mapping files for the persistence unit contain named stored procedure queries of the
same name.

The named stored procedure query defined is added to the named stored procedure queries defined in annotations. If
a named stored procedure query of the same name is defined in annotations, the named stored procedure query
defined by this subelement overrides that definition.

12.2.2.10. sql-result-set-mapping

The SQL result set mapping defined by the sql-result-set-mapping subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain SQL result set mappings of the same name.

The SQL result set mapping defined is added to the SQL result set mappings defined in annotations. If a SQL result set
mapping of the same name is defined in annotations, the SQL result set mapping defined by this subelement overrides
that definition.

12.2.2.11. entity

The entity subelement defines an entity of the persistence unit. It is undefined if multiple mapping files for the
persistence unit contain entries for the same entity.

The entity class may or may not have been annotated as Entity. The subelements and attributes of the entity element

override as specified in Section 12.2.3.

12.2.2.12. mapped-superclass

The mapped-superclass subelement defines a mapped superclass of the persistence unit. It is undefined if multiple
mapping files for the persistence unit contain entries for the same mapped superclass.

The mapped superclass may or may not have been annotated as MappedSuperclass. The subelements and attributes of the

314

mapped-superclass element override as specified in Section 12.2.4.

12.2.2.13. embeddable

The embeddable subelement defines an embeddable class of the persistence unit. It is undefined if multiple mapping files
for the persistence unit contain entries for the same embeddable class.

The embeddable class may or may not have been annotated as Embeddable. The subelements and attributes of the

embeddable element override as specified in Section 12.2.5.

12.2.2.14. converter

The converter defined by the converter subelement applies to the persistence unit. It is undefined if multiple mapping
files for the persistence unit contain converters for the same target type.

The converter defined is added to the converters defined in annotations. If a converter for the same target type is

defined in annotations, the converter defined by this subelement overrides that definition.

12.2.3. entity Subelements and Attributes

These apply only to the entity for which they are subelements or attributes, unless otherwise specified below.

12.2.3.1. metadata-complete

If the metadata-complete attribute of the entity element is specified as true, any annotations on the entity class (and its
fields and properties) are ignored. When metadata-complete is specified as true and XML attributes or sub-elements of
the entity element are omitted, the default values for those attributes and elements are applied.

12.2.3.2. access

The access attribute defines the access type for the entity. The access attribute overrides any access type specified by the
persistence-unit-defaults element or entity-mappings element for the given entity. The access type for a field or property
of the entity may be overridden by specifying by overriding the mapping for that field or property using the
appropriate XML subelement, as described in Section 12.2.3.26 below.

Caution must be exercised in overriding an access type that was specified or defaulted using annotations, as doing so

may cause applications to break.

12.2.3.3. cacheable

The cacheable attribute defines whether the entity should be cached or must not be cached when the shared-cache-mode
element of the persistence.xml file is specified as ENABLE_SELECTIVE or DISABLE_SELECTIVE. If the Cacheable annotation was
specified for the entity, its value is overridden by this attribute. The value of the cacheable attribute is inherited by
subclasses (unless otherwise overridden for a subclass by the Cacheable annotation or cacheable XML attribute).

12.2.3.4. name

The name attribute defines the entity name. The name attribute overrides the value of the entity name defined by the
name element of the Entity annotation (whether explicitly specified or defaulted). Caution must be exercised in
overriding the entity name, as doing so may cause applications to break.

315

12.2.3.5. table

The table subelement overrides any Table annotation (including defaulted Table values) on the entity. If a table
subelement is present, and attributes or subelements of that table subelement are not explicitly specified, their default
values are applied.

12.2.3.6. secondary-table

The secondary-table subelement overrides all SecondaryTable and SecondaryTables annotations (including defaulted
SecondaryTable values) on the entity. If a secondary-table subelement is present, and attributes or subelements of that
secondary - table subelement are not explicitly specified, their default values are applied.

12.2.3.7. primary-key-join-column

The primary-key-join-column subelement of the entity element specifies a primary key column that is used to join the
table of an entity subclass to the primary table for the entity when the joined strategy is used. The primary-key-join-
column subelement overrides all PrimaryKeyJoinColumn and PrimaryKeyJoinColumns annotations (including defaulted
PrimaryKeyJoinColumn values) on the entity. If a primary-key-join-column subelement is present, and attributes or
subelements of that primary-key-join-column subelement are not explicitly specified, their default values are applied.

12.2.3.8. id-class

The id-class subelement overrides any IdClass annotation specified on the entity.

12.2.3.9. inheritance

The inheritance subelement overrides any Inheritance annotation (including defaulted Inheritance values) on the entity.
If an inheritance subelement is present, and the strategy attribute is not explicitly specified, its default value is applied.

This element applies to the entity and its subclasses (unless otherwise overridden for a subclass by an annotation or
XML element).

Support for the combination of inheritance strategies is not required by this specification. Portable applications should
use only a single inheritance strategy within an entity hierarchy.

12.2.3.10. discriminator-value

The discriminator-value subelement overrides any DiscriminatorValue annotations (including defaulted
DiscriminatorValue values) on the entity.

12.2.3.11. discriminator-column

The discriminator-column subelement overrides any DiscriminatorColumn annotation (including defaulted
DiscriminatorColumn values) on the entity. If a discriminator-column subelement is present, and attributes of that
discriminator-column subelement are not explicitly specified, their default values are applied.

This element applies to the entity and its subclasses (unless otherwise overridden for a subclass by an annotation or
XML element).

12.2.3.12. sequence-generator

The generator defined by the sequence-generator subelement is added to any generators defined in annotations and any

316

other generators defined in XML. If a generator of the same name is defined in annotations, the generator defined by
this subelement overrides that definition. If a sequence-generator subelement is present, and attributes or subelements
of that sequence-generator subelement are not explicitly specified, their default values are applied.

The generator defined by the sequence-generator subelement applies to the persistence unit. It is undefined if multiple
mapping files for the persistence unit contain generators of the same name.

12.2.3.13. table-generator

The generator defined by the table-generator subelement is added to any generators defined in annotations and any
other generators defined in XML. If a generator of the same name is defined in annotations, the generator defined by
this subelement overrides that definition. If a table-generator subelement is present, and attributes or subelements of
that table-generator subelement are not explicitly specified, their default values are applied.

The generator defined by the table-generator subelement applies to the persistence unit. It is undefined if multiple
mapping files for the persistence unit contain generators of the same name.

12.2.3.14. attribute-override

The attribute-override subelement is additive to any AttributeOverride or AttributeOverrides annotations on the entity. It
overrides any AttributeOverride elements for the same attribute name. If an attribute-override subelement is present,
and attributes or subelements of that attribute-override subelement are not explicitly specified, their default values are
applied.

12.2.3.15. association-override

The association-override subelement is additive to any AssociationOverride or AssociationOverrides annotations on the
entity. It overrides any AssociationOverride elements for the same attribute name. If an association-override subelement
is present, and attributes or subelements of that association-override subelement are not explicitly specified, their
default values are applied.

12.2.3.16. convert

The convert subelement is additive to any Convert or Converts annotations on the entity. It overrides any Convert
annotation for the same attribute name. If a convert subelement is present, and attributes or subelements of that convert
subelement are not explicitly specified, their default values are applied.

12.2.3.17. named-entity-graph

The named-entity-graph subelement is additive to any NamedEntityGraph annotations on the entity. It overrides any
NamedEntityGraph annotation with the same name.

12.2.3.18. named-query

The named query defined by the named-query subelement is added to any named queries defined in annotations, and
any other named queries defined in XML. If a named query of the same name is defined in annotations, the named
query defined by this subelement overrides that definition. If a named-query subelement is present, and attributes or
subelements of that named-query subelement are not explicitly specified, their default values are applied.

The named query defined by the named-query subelement applies to the persistence unit. It is undefined if multiple
mapping files for the persistence unit contain named queries of the same name.

317

12.2.3.19. named-native-query

The named query defined by the named-native-query subelement is added to any named queries defined in annotations,
and any other named queries defined in XML. If a named query of the same name is defined in annotations, the named
query defined by this subelement overrides that definition. If a named-native-query subelement is present, and attributes
or subelements of that named-native-query subelement are not explicitly specified, their default values are applied.

The named native query defined by the named-native-query subelement applies to the persistence unit. It is undefined if

multiple mapping files for the persistence unit contain named queries of the same name.

12.2.3.20. named-stored-procedure-query

The named stored procedure query defined by the named-stored-procedure-query subelement is added to any named
stored procedure queries defined in annotations, and any other named stored procedure queries defined in XML. If a
named stored procedure query of the same name is defined in annotations, the named stored procedure query defined
by this subelement overrides that definition. If a named-stored-procedure-query subelement is present, and attributes or
subelements of that named-stored-procedure-query subelement are not explicitly specified, their default values are
applied.

The named stored procedure query defined by the named-stored-procedure-query subelement applies to the persistence
unit. It is undefined if multiple mapping files for the persistence unit contain named stored procedure queries of the
same name.

12.2.3.21. sql-result-set-mapping

The SQL result set mapping defined by the sql-result-set-mapping is added to the SQL result set mappings defined in
annotations, and any other SQL result set mappings defined in XML. If a SQL result set mapping of the same name is
defined in annotations, the SQL result set mapping defined by this subelement overrides that definition. If a sql-result-
set-mapping subelement is present, and attributes or subelements of that sql-result-set-mapping subelement are not
explicitly specified, their default values are applied.

The SQL result set mapping defined by the sql-result-set-mapping subelement applies to the persistence unit. It is
undefined if multiple mapping files for the persistence unit contain SQL result set mappings of the same name.

12.2.3.22. exclude-default-listeners

The exclude-default-listeners subelement applies whether or not the ExcludeDefaultListeners annotation was specified
on the entity.

This element causes the default entity listeners to be excluded for the entity and its subclasses.
12.2.3.23. exclude-superclass-listeners

The exclude-superclass-listeners subelement applies whether or not the ExcludeSuperclassListeners annotation was
specified on the entity.

This element causes any superclass listeners to be excluded for the entity and its subclasses.
12.2.3.24. entity-listeners

The entity-listeners subelement overrides any EntityListeners annotation on the entity.

These listeners apply to the entity and its subclasses unless otherwise excluded.

318

12.2.3.25. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load

These subelements override any lifecycle callback methods defined by the corresponding annotations on the entity.

12.2.3.26. attributes

The attributes element groups the mapping subelements for the fields and properties of the entity. It may be sparsely
populated to include only a subset of the fields and properties. If the value of metadata-complete is true, the remainder of
the attributes will be defaulted according to the default rules. If metadata-complete is not specified, or is false, the
mappings for only those properties and fields that are explicitly specified will be overridden.

id

The id subelement overrides the mapping for the specified field or property. If an id subelement is present, and
attributes or subelements of that id subelement are not explicitly specified, their default values are applied.

embedded-id

The embedded-1id subelement overrides the mapping for the specified field or property. If an embedded-id subelement is
present, and attributes or subelements of that embedded-id subelement are not explicitly specified, their default values
are applied.

basic

The basic subelement overrides the mapping for the specified field or property. If a basic subelement is present, and
attributes or subelements of that basic subelement are not explicitly specified, their default values are applied.

version

The version subelement overrides the mapping for the specified field or property. If a version subelement is present,
and attributes or subelements of that version subelement are not explicitly specified, their default values are applied.

many-to-one

The many-to-one subelement overrides the mapping for the specified field or property. If a many-to-one subelement is
present, and attributes or subelements of that many-to-one subelement are not explicitly specified, their default values
are applied.

one-to-many

The one-to-many subelement overrides the mapping for the specified field or property. If a one-to-many subelement is
present, and attributes or subelements of that one-to-many subelement are not explicitly specified, their default values
are applied.

one-to-one

The one-to-one subelement overrides the mapping for the specified field or property. If a one-to-one subelement is
present, and attributes or subelements of that one-to-one subelement are not explicitly specified, their default values
are applied.

319

many-to-many

The many-to-many subelement overrides the mapping for the specified field or property. If a many-to-many subelement is
present, and attributes or subelements of that many-to-many subelement are not explicitly specified, their default values
are applied.

element-collection

The element-collection subelement overrides the mapping for the specified field or property. If an element-collection
subelement is present, and attributes or subelements of that element-collection subelement are not explicitly specified,
their default values are applied.

embedded

The embedded subelement overrides the mapping for the specified field or property. If an embedded subelement is present,
and attributes or subelements of that embedded subelement are not explicitly specified, their default values are applied.

transient

The transient subelement overrides the mapping for the specified field or property.

12.2.4. mapped-superclass Subelements and Attributes

These apply only to the mapped-superclass for which they are subelements or attributes, unless otherwise specified
below.

12.2.4.1. metadata-complete

If the metadata-complete attribute of the mapped-superclass element is specified as true, any annotations on the mapped
superclass (and its fields and properties) are ignored. When metadata-complete is specified as true and attributes or sub-
elements of the mapped-superclass element are omitted, the default values for those attributes and elements are applied.

12.2.4.2. access

The access attribute defines the access type for the mapped superclass. The access attribute overrides any access type
specified by the persistence-unit-defaults element or entity-mappings element for the given mapped superclass. The
access type for a field or property of the mapped superclass may be overridden by specifying by overriding the
mapping for that field or property using the appropriate XML subelement, as described in Section 12.2.4.8 below.

Caution must be exercised in overriding an access type that was specified or defaulted using annotations, as doing so
may cause applications to break.

12.2.4.3. id-class

The id-class subelement overrides any IdClass annotation specified on the mapped superclass.

12.2.4.4. exclude-default-listeners

The exclude-default-listeners subelement applies whether or not the ExcludeDefaultListeners annotation was specified
on the mapped superclass.

320

This element causes the default entity listeners to be excluded for the mapped superclass and its subclasses.

12.2.4.5. exclude-superclass-listeners

The exclude-superclass-listeners subelement applies whether or not the ExcludeSuperclassListeners annotation was
specified on the mapped superclass.

This element causes any superclass listeners to be excluded for the mapped superclass and its subclasses.
12.2.4.6. entity-listeners

The entity-listeners subelement overrides any EntityListeners annotation on the mapped superclass.
These listeners apply to the mapped superclass and its subclasses unless otherwise excluded.

12.2.4.7. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load

These subelements override any lifecycle callback methods defined by the corresponding annotations on the mapped
superclass.

12.2.4.8. attributes

The attributes element groups the mapping subelements for the fields and properties defined by the mapped
superclass. It may be sparsely populated to include only a subset of the fields and properties. If the value of metadata-
complete is true, the remainder of the attributes will be defaulted according to the default rules. If metadata-complete is
not specified, or is false, the mappings for only those properties and fields that are explicitly specified will be
overridden.

id

The id subelement overrides the mapping for the specified field or property. If an id subelement is present, and
attributes or subelements of that id subelement are not explicitly specified, their default values are applied.

embedded-id

The embedded-id subelement overrides the mapping for the specified field or property. If an embedded-id subelement is
present, and attributes or subelements of that embedded-id subelement are not explicitly specified, their default values
are applied.

basic

The basic subelement overrides the mapping for the specified field or property. If a basic subelement is present, and
attributes or subelements of that basic subelement are not explicitly specified, their default values are applied.

version

The version subelement overrides the mapping for the specified field or property. If a version subelement is present,
and attributes or subelements of that version subelement are not explicitly specified, their default values are applied.

321

many-to-one

The many-to-one subelement overrides the mapping for the specified field or property. If a many-to-one subelement is
present, and attributes or subelements of that many-to-one subelement are not explicitly specified, their default values
are applied.

one-to-many

The one-to-many subelement overrides the mapping for the specified field or property. If a one-to-many subelement is
present, and attributes or subelements of that one-to-many subelement are not explicitly specified, their default values
are applied.

one-to-one

The one-to-one subelement overrides the mapping for the specified field or property. If a one-to-one subelement is
present, and attributes or subelements of that one-to-one subelement are not explicitly specified, their default values
are applied.

many-to-many

The many-to-many subelement overrides the mapping for the specified field or property. If a many-to-many subelement is
present, and attributes or subelements of that many-to-many subelement are not explicitly specified, their default values
are applied.

element-collection

The element-collection subelement overrides the mapping for the specified field or property. If an element-collection
subelement is present, and attributes or subelements of that element-collection subelement are not explicitly specified,
their default values are applied.

embedded

The embedded subelement overrides the mapping for the specified field or property. If an embedded subelement is present,
and attributes or subelements of that embedded subelement are not explicitly specified, their default values are applied.

transient

The transient subelement overrides the mapping for the specified field or property.

12.2.5. embeddable Subelements and Attributes

These apply only to the embeddable for which they are subelements or attributes.

12.2.5.1. metadata-complete

If the metadata-complete attribute of the embeddable element is specified as true, any annotations on the embeddable class
(and its fields and properties) are ignored. When metadata-complete is specified as true and attributes and sub-elements
of the embeddable element are omitted, the default values for those attributes and elements are applied.

322

12.2.5.2. access

The access attribute defines the access type for the embeddable class. The access attribute overrides any access type
specified by the persistence-unit-defaults element or entity-mappings element for the given embeddable class. The access
type for a field or property of the embeddable class may be overridden by specifying by overriding the mapping for
that field or property using the appropriate XML subelement, as described in Section 12.2.5.3 below.

Caution must be exercised in overriding an access type that was specified or defaulted using annotations, as doing so

may cause applications to break.

12.2.5.3. attributes

The attributes element groups the mapping subelements for the fields and properties defined by the embeddable class.
It may be sparsely populated to include only a subset of the fields and properties. If the value of metadata-complete is
true, the remainder of the attributes will be defaulted according to the default rules. If metadata-complete is not specified,
or is false, the mappings for only those properties and fields that are explicitly specified will be overridden.

basic

The basic subelement overrides the mapping for the specified field or property. If a basic subelement is present, and
attributes or subelements of that basic subelement are not explicitly specified, their default values are applied.

many-to-one

The many-to-one subelement overrides the mapping for the specified field or property. If a many-to-one subelement is
present, and attributes or subelements of that many-to-one subelement are not explicitly specified, their default values
are applied.

one-to-many

The one-to-many subelement overrides the mapping for the specified field or property. If a one-to-many subelement is
present, and attributes or subelements of that one-to-many subelement are not explicitly specified, their default values
are applied.

one-to-one

The one-to-one subelement overrides the mapping for the specified field or property. If a one-to-one subelement is
present, and attributes or subelements of that one-to-one subelement are not explicitly specified, their default values
are applied.

many-to-many

The many-to-many subelement overrides the mapping for the specified field or property. If a many-to-many subelement is
present, and attributes or subelements of that many-to-many subelement are not explicitly specified, their default values
are applied.

element-collection

The element-collection subelement overrides the mapping for the specified field or property. If an element-collection
subelement is present, and attributes or subelements of that element-collection subelement are not explicitly specified,
their default values are applied.

323

embedded

The embedded subelement overrides the mapping for the specified field or property. If an embedded subelement is present,
and attributes or subelements of that embedded subelement are not explicitly specified, their default values are applied.

transient

The transient subelement overrides the mapping for the specified field or property.

12.3. XML Schema

This section provides the XML object/relational mapping schema for use with the Persistence APIL

<?xml version="1.0" encoding="UTF-8"?>

<!-- Jakarta Persistence API object/relational mapping file schema -->
<xsd:schema targetNamespace="https://jakarta.ee/xml/ns/persistence/orm"
xmlns:orm="https://jakarta.ee/xml/ns/persistence/orm"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="3.2">
<xsd:annotation>
<xsd:documentation><![CDATA[

This is the XML Schema for the persistence object/relational mapping file.
The file may be named "META-INF/orm.xml" in the persistence

archive or it may be named some other name which would be

used to locate the file as resource on the classpath.

Object/relational mapping files must indicate the object/relational
mapping file schema by using the persistence namespace:

https://jakarta.ee/xml/ns/persistence/orm

and indicate the version of the schema by
using the version element as shown below:

<entity-mappings xmlns="https://jakarta.ee/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/persistence/orm
https://jakarta.ee/xml/ns/persistence/orm/orm_3_2.xsd"
version="3.2">

</entity-mappings>

11></xsd:documentation>
</xsd:annotation>

<xsd:complexType name="emptyType"/>

<xsd:simpleType name="versionType">
<xsd:restriction base="xsd:token">
<xsd:pattern value="[0-9]+(\.[0-9]+)*"/>
</xsd:restriction>
</xsd:simpleType>

<loo *kxk o>

<xsd:element name="entity-mappings">
<xsd:complexType>
<xsd:annotation>

324

<xsd:documentation>

The entity-mappings element is the root element of a mapping
file. It contains the following four types of elements:

1. The persistence-unit-metadata element contains metadata
for the entire persistence unit. It is undefined if this element
occurs in multiple mapping files within the same persistence unit.

2. The package, schema, catalog and access elements apply to all of
the entity, mapped-superclass and embeddable elements defined in
the same file in which they occur.

3. The sequence-generator, table-generator, converter, named-query,
named-native-query, named-stored-procedure-query, and
sql-result-set-mapping elements are global to the persistence

unit. It is undefined to have more than one sequence-generator

or table-generator of the same name in the same or different
mapping files in a persistence unit. It is undefined to have

more than one named-query, named-native-query, sql-result-set-mapping,
or named-stored-procedure-query of the same name in the same

or different mapping files in a persistence unit. It is also
undefined to have more than one converter for the same target

type in the same or different mapping files in a persistence unit.

4. The entity, mapped-superclass and embeddable elements each define
the mapping information for a managed persistent class. The mapping
information contained in these elements may be complete or it may

be partial.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string"
minOccurs="0"/>

<xsd:element name="persistence-unit-metadata"
type="orm:persistence-unit-metadata"
minOccurs="0"/>

<xsd:element name="package" type="xsd:string"
minOccurs="0"/>

<xsd:element name="schema" type="xsd:string"
minOccurs="0"/>

<xsd:element name="catalog" type="xsd:string"
minOccurs="0"/>

<xsd:element name="access" type="orm:access-type"
minOccurs="0"/>

<xsd:element name="sequence-generator" type="orm:sequence-generator"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="named-query" type="orm:named-query"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="named-native-query" type="orm:named-native-query"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="named-stored-procedure-query"
type="orm:named-stored-procedure-query"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="sql-result-set-mapping"
type="orm:sql-result-set-mapping"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="mapped-superclass" type="orm:mapped-superclass"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="entity" type="orm:entity"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="embeddable" type="orm:embeddable"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="converter" type="orm:converter"

325

326

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="version" type="orm:versionType"
fixed="3.2" use="required"/>
</xsd:complexType>
</xsd:element>

<loo *kxsk o>

<xsd:complexType name="persistence-unit-metadata">
<xsd:annotation>
<xsd:documentation>

Metadata that applies to the persistence unit and not just to
the mapping file in which it is contained.

If the xml-mapping-metadata-complete element is specified,
the complete set of mapping metadata for the persistence unit
is contained in the XML mapping files for the persistence unit.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>

<xsd:element name="xml-mapping-metadata-complete" type="orm:emptyType"

minOccurs="0"/>
<xsd:element name="persistence-unit-defaults"
type="orm:persistence-unit-defaults"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<l-- -->

<xsd:complexType name="persistence-unit-defaults">
<xsd:annotation>
<xsd:documentation>

These defaults are applied to the persistence unit as a whole
unless they are overridden by local annotation or XML
element settings.

schema - Used as the schema for all tables, secondary tables, join

tables, collection tables, sequence generators, and table
generators that apply to the persistence unit

catalog - Used as the catalog for all tables, secondary tables, join

tables, collection tables, sequence generators, and table
generators that apply to the persistence unit
delimited-identifiers - Used to treat database identifiers as
delimited identifiers.
access - Used as the access type for all managed classes in
the persistence unit

cascade-persist - Adds cascade-persist to the set of cascade options

in all entity relationships of the persistence unit
entity-listeners - List of default entity listeners to be invoked
on each entity in the persistence unit.
</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="schema" type="xsd:string"
minOccurs="0"/>
<xsd:element name="catalog" type="xsd:string"
minOccurs="0"/>
<xsd:element name="delimited-identifiers" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="access" type="orm:access-type"

minOccurs="0"/>

<xsd:element name="cascade-persist" type="orm:emptyType"

minOccurs="0"/>

<xsd:element name="entity-listeners" type="orm:entity-listeners"

</xsd:sequence>

minOccurs="0"/>

</xsd:complexType>

<I--

<xsd:complexType name="entity">
<xsd:annotation>
<xsd:documentation>

Defines the settings and mappings for an entity. Is allowed to be
sparsely populated and used in conjunction with the annotations.
Alternatively, the metadata-complete attribute can be used to
indicate that no annotations on the entity class (and its fields
or properties) are to be processed. If this is the case then

the defaulting rules for the entity and its subelements will

be recursively applied.

@Target(TYPE) @Retention(RUNTIME)
public @interface Entity {

}

String name() default "";

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd
<xsd

<xsd

relement
relement

relement

name="description" type="xsd:string" minOccurs="0"/>
name="table" type="orm:table"

minOccurs="0"/>

name="secondary-table" type="orm:secondary-table
minOccurs="0" maxOccurs="unbounded"/>

<xsd:sequence>
<xsd:element name="primary-key-join-column"

type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="primary-key-foreign-key"

type="orm: foreign-key"
minOccurs="0"/>

</xsd:sequence>

<xsd
<xsd

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

<xsd:

relement
:element
element

element

element

element

element

element

element

element

element

element

name="1id-class" type="orm:id-class" minOccurs="0"/>

name="1inheritance" type="orm:inheritance" minOccurs="0"/>

name="discriminator-value" type="orm:discriminator-value"
minOccurs="0"/>

name="discriminator-column"
type="orm:discriminator-column"

minOccurs="0"/>

name="sequence-generator" type="orm:sequence-generator"
minOccurs="0"/>

name="table-generator" type="orm:table-generator"
minOccurs="0"/>

name="named-query" type="orm:named-query"

minOccurs="0" maxOccurs="unbounded"/>
name="named-native-query" type="orm:named-native-query"
minOccurs="0" maxOccurs="unbounded"/>
name="named-stored-procedure-query"
type="orm:named-stored-procedure-query"

minOccurs="0" maxOccurs="unbounded"/>
name="sql-result-set-mapping"
type="orm:sql-result-set-mapping"

minOccurs="0" maxOccurs="unbounded"/>
name="exclude-default-listeners" type="orm:emptyType"
minOccurs="0"/>

name="exclude-superclass-listeners" type="orm:emptyType"

327

328

minOccurs="0"/>
<xsd:element name="entity-listeners" type="orm:entity-listeners"
minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist” type="orm:post-persist”
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="association-override"
type="orm:association-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="convert" type="orm:convert"
minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="named-entity-graph" type="orm:named-entity-graph"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="attributes" type="orm:attributes" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="cacheable" type="xsd:boolean"/>
<xsd:attribute name="metadata-complete" type="xsd:boolean"/>

</xsd:complexType>

<xsd:simpleType name="access-type">

<xsd:annotation>
<xsd:documentation>

This element determines how the persistence provider accesses the
state of an entity or embedded object.

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="PROPERTY"/>
<xsd:enumeration value="FIELD"/>
</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="association-override">

<xsd:annotation>
<xsd:documentation>

@Repeatable(AssociationOverrides.class)
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AssociationOverride {
String name();
JoinColumn[] joinColumns() default{};
ForeignKey foreignKey() default @ForeignKey(PROVIDER_DEFAULT);
JoinTable joinTable() default @JoinTable;
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:choice>
<xsd:sequence>

<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="foreign-key" type="orm:foreign-key"
minOccurs="0"/>
</xsd:sequence>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="attribute-override">
<xsd:annotation>
<xsd:documentation>

@Repeatable(AttributeOverrides.class)
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface AttributeOverride {

String name();

Column column();

}

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="column" type="orm:column"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

</xsd:complexType>

<I-- -->

<xsd:complexType name="attributes">
<xsd:annotation>
<xsd:documentation>

This element contains the entity field or property mappings.
It may be sparsely populated to include only a subset of the

fields or properties. If metadata-complete for the entity is true

then the remainder of the attributes will be defaulted according
to the default rules.

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:choice>
<xsd:element name="id" type="orm:id"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="embedded-id" type="orm:embedded-id"
minOccurs="0"/>

</xsd:choice>

<xsd:element name="basic" type="orm:basic"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="version" type="orm:version"
minOccurs="0"/>

<xsd:element name="many-to-one" type="orm:many-to-one"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="one-to-many" type="orm:one-to-many"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="one-to-one" type="orm:one-to-one"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="many-to-many" type="orm:many-to-many"

329

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="element-collection" type="orm:element-collection"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="embedded" type="orm:embedded"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="transient" type="orm:transient"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<I-- -->

<xsd:complexType name="basic">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Basic {
FetchType fetch() default FetchType.EAGER;
boolean optional() default true;

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column" minOccurs="0"/>
<xsd:choice>
<xsd:element name="1lob" type="orm:lob" minOccurs="0"/>
<xsd:element name="temporal" type="orm:temporal” minOccurs="0"/>
<xsd:element name="enumerated" type="orm:enumerated" minOccurs="0"/>
<xsd:element name="convert" type="orm:convert" minOccurs="0"/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="cascade-type">
<xsd:annotation>
<xsd:documentation>

public enum CascadeType { ALL, PERSIST, MERGE, REMOVE, REFRESH, DETACH }

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="cascade-all" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="cascade-persist" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="cascade-merge" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="cascade-remove" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="cascade-refresh" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="cascade-detach" type="orm:emptyType"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<I-- -->

330

<xsd:complexType name="check-constraint">

<xsd:annotation>
<xsd:documentation>

@Target({}) ©Retention(RUNTIME)
public @interface CheckConstraint {
String name() default "";
String constraint();
String options() default "";

}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="constraint" type="xsd:string" use="required"/>

<xsd:attribute name="options" type="xsd:string"/>

</xsd:complexType>

<I--

<xsd:complexType name="collection-table">

<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface CollectionTable {

String name() default "";

String catalog() default "";

String schema() default "";
JoinColumn[] joinColumns() default {};

ForeignKey foreignKey() default @ForeignKey(ConstraintMode.PROVIDER_DEFAULT);

UniqueConstraint[] uniqueConstraints() default {};

Index[] indexes() default {};

String options() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:sequence>

<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="foreign-key" type="orm:foreign-key"

minOccurs="0"/>
</xsd:sequence>

<xsd:element name="unique-constraint" type="orm:unique-constraint"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="index" type="orm:index"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>

</xsd:complexType>

<l--

<xsd:complexType name="column">

<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Column {

String name() default "";

boolean unique() default false;

331

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default "";

String options() default "";

String table() default "";

int length() default 255;

int precision() default @; // decimal precision
int scale() default @; // decimal scale

int secondPrecision() default -1; //fractional second precision
CheckConstraint[] check() default {};

String comment() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="comment" type="xsd:string" minOccurs="0" />
<xsd:element name="check-constraint" type="orm:check-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>
<xsd:attribute name="insertable" type="xsd:boolean"/>
<xsd:attribute name="updatable" type="xsd:boolean"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
<xsd:attribute name="precision" type="xsd:int"/>
<xsd:attribute name="scale" type="xsd:int"/>
<xsd:attribute name="second-precision" type="xsd:int"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="column-result">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({}) @Retention(RUNTIME)
public @interface ColumnResult {
String name();
(lass<?> type() default void.class;
}

11></xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="class" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:simpleType name="constraint-mode">
<xsd:annotation>
<xsd:documentation>

public enum ConstraintMode { CONSTRAINT, NO_CONSTRAINT, PROVIDER_DEFAULT }

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="CONSTRAINT"/>
<xsd:enumeration value="NO_CONSTRAINT"/>
<xsd:enumeration value="PROVIDER_DEFAULT"/>

332

</xsd:restriction>
</xsd:simpleType>

<l-- >

<xsd:complexType name="constructor-result">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({}) @Retention(RUNTIME)

public @interface ConstructorResult {
(lass<?> targetClass();
ColumnResult[] columns();

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column-result"
maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="target-class" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="convert">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Repeatable(Converts.class)

@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)

public @interface Convert {
(lass<? extends AttributeConverter> converter() default AttributeConverter.class;
String attributeName() default "";
boolean disableConversion() default false;

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="converter" type="xsd:string"/>
<xsd:attribute name="attribute-name" type="xsd:string"/>
<xsd:attribute name="disable-conversion" type="xsd:boolean"/>

</xsd:complexType>

<l-- -->

<xsd:complexType name="converter">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface Converter {

boolean autoApply() default false;
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="auto-apply" type="xsd:boolean"/>

333

</xsd:complexType>

<I-- -->

<xsd:complexType name="discriminator-column">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface DiscriminatorColumn {
String name() default "DTYPE";
DiscriminatorType discriminatorType() default STRING;

String columnDefinition() default "";
String options() default "";
int length() default 31;

}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="discriminator-type" type="orm:discriminator-type"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="discriminator-type">
<xsd:annotation>
<xsd:documentation>

public enum DiscriminatorType { STRING, CHAR, INTEGER }

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="STRING"/>
<xsd:enumeration value="CHAR"/>
<xsd:enumeration value="INTEGER"/>

</xsd:restriction>

</xsd:simpleType>

<l-- -->

<xsd:simpleType name="discriminator-value">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)

public @interface DiscriminatorValue {
String value();

}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<l-- -->

<xsd:complexType name="element-collection">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ElementCollection {

334

(lass<?> targetClass() default void.class;
FetchType fetch() default FetchType.LAZY;
}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:element name="order-by" type="orm:order-by"
minOccurs="0"/>
<xsd:element name="order-column" type="orm:order-column"
minOccurs="0"/>
</xsd:choice>
<xsd:choice>
<xsd:element name="map-key" type="orm:map-key"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-class" type="orm:map-key-class"
minOccurs="0"/>
<xsd:choice>
<xsd:element name="map-key-temporal"
type="orm: temporal”
minOccurs="0"/>
<xsd:element name="map-key-enumerated"
type="orm:enumerated"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-attribute-override"
type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="map-key-convert" type="orm:convert
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:choice>
<xsd:choice>
<xsd:element name="map-key-column"
type="orm:map-key-column"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-join-column"
type="orm:map-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="map-key-foreign-key"
type="orm: foreign-key"
minOccurs="0"/>
</xsd:sequence>
</xsd:choice>
</xsd:sequence>
</xsd:choice>
<xsd:choice>
<xsd:sequence>
<xsd:element name="column" type="orm:column" minOccurs="0"/>
<xsd:choice>
<xsd:element name="temporal"
type="orm: temporal”
minOccurs="0"/>
<xsd:element name="enumerated"
type="orm:enumerated"
minOccurs="0"/>
<xsd:element name="1ob"
type="orm:lob"
minOccurs="0"/>
</xsd:choice>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="attribute-override"
type="orm:attribute-override"

335

336

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="association-override"
type="orm:association-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="convert" type="orm:convert"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:choice>
<xsd:element name="collection-table" type="orm:collection-table"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-class" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="embeddable">
<xsd:annotation>
<xsd:documentation>

Defines the settings and mappings for embeddable objects. Is
allowed to be sparsely populated and used in conjunction with
the annotations. Alternatively, the metadata-complete attribute
can be used to indicate that no annotations are to be processed
in the class. If this is the case then the defaulting rules will
be recursively applied.

@Target({TYPE}) @Retention(RUNTIME)
public @interface Embeddable {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="attributes" type="orm:embeddable-attributes"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="metadata-complete" type="xsd:boolean"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="embeddable-attributes">
<xsd:sequence>

<xsd:element name="basic" type="orm:basic"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="many-to-one" type="orm:many-to-one"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="one-to-many" type="orm:one-to-many"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="one-to-one" type="orm:one-to-one"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="many-to-many" type="orm:many-to-many"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="element-collection" type="orm:element-collection"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="embedded" type="orm:embedded"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="transient" type="orm:transient"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<l-- * -->

<xsd:complexType name="embedded">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Embedded {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="attribute-override" type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="association-override"
type="orm:association-override"
minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="convert" type="orm:convert"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="embedded-id">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface EmbeddedId {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="attribute-override" type="orm:attribute-override
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="entity-listener">
<xsd:annotation>
<xsd:documentation>

Defines an entity listener to be invoked at lifecycle events
for the entities that 1list this listener.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"

minOccurs="0"/>

<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="class" type="xsd:string" use="required"/>

</xsd:complexType>

<l-- -->

<xsd:complexType name="entity-listeners">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({TYPE}) @Retention(RUNTIME)
public @interface EntitylListeners {
Class<?>[] value();

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="entity-listener" type="orm:entity-listener"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<l-- -->

<xsd:complexType name="entity-result">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({}) @Retention(RUNTIME)
public @interface EntityResult {
Class<?> entityClass();
LockModeType lockMode() default LockModeType.OPTIMISTIC;
FieldResult[] fields() default {};
String discriminatorColumn() default "";

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="lock-mode" type="orm:lock-mode-type" minOccurs="0"/>
<xsd:element name="field-result" type="orm:field-result"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="entity-class" type="xsd:string" use="required"/>
<xsd:attribute name="discriminator-column" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:simpleType name="enum-type">
<xsd:annotation>
<xsd:documentation>

public enum EnumType { ORDINAL, STRING }

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="ORDINAL"/>
<xsd:enumeration value="STRING"/>
</xsd:restriction>
</xsd:simpleType>

<l-- -->

<xsd:simpleType name="enumerated">
<xsd:annotation>
<xsd:documentation>

338

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Enumerated {

EnumType value() default ORDINAL;
}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="orm:enum-type"/>
</xsd:simpleType>

<l-- -->

<xsd:simpleType name="fetch-type">
<xsd:annotation>
<xsd:documentation>

public enum FetchType { LAZY, EAGER }

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="LAZY"/>
<xsd:enumeration value="EAGER"/>
</xsd:restriction>
</xsd:simpleType>

<I-- -->

<xsd:complexType name="field-result">
<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface FieldResult {
String name();
String column();
}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="column" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="foreign-key">
<xsd:annotation>
<xsd:documentation>

@Target({}) ©Retention(RUNTIME)

public @interface ForeignKey {
String name() default "";
ConstraintMode value() default CONSTRAINT;
String foreign-key-definition() default "";

String options() default "";
}

Note that the elements that embed the use of the annotation
default this use as @ForeignKey(PROVIDER_DEFAULT).

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>

339

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="constraint-mode" type="orm:constraint-mode"/>

<xsd:attribute name="foreign-key-definition" type="xsd:string"/>

<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="generated-value">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface GeneratedValue {
GenerationType strategy() default AUTO;

String generator() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="strategy" type="orm:generation-type"/>
<xsd:attribute name="generator" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="generation-type">
<xsd:annotation>
<xsd:documentation>

public enum GenerationType { TABLE, SEQUENCE, IDENTITY, UUID, AUTO }

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="TABLE"/>
<xsd:enumeration value="SEQUENCE"/>
<xsd:enumeration value="IDENTITY"/>
<xsd:enumeration value="UUID"/>
<xsd:enumeration value="AUT0"/>

</xsd:restriction>

</xsd:simpleType>

<l-- -->

<xsd:complexType name="id">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Id {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column"
minOccurs="0"/>
<xsd:element name="generated-value" type="orm:generated-value"
minOccurs="0"/>
<xsd:element name="temporal" type="orm:temporal”
minOccurs="0"/>
<xsd:element name="table-generator" type="orm:table-generator"
minOccurs="0"/>
<xsd:element name="sequence-generator" type="orm:sequence-generator"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>

340

<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="id-class">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({TYPE}) @Retention(RUNTIME)
public @interface IdClass {
Class<?> value();

}

11></xsd:documentation>
</xsd:annotation>
<xsd:attribute name="class" type="xsd:string" use="required"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="index">
<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface Index {
String name() default "";
String columnList();
boolean unique() default false;

String options() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="column-1ist" type="xsd:string" use="required"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="inheritance">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface Inheritance {

InheritanceType strategy() default InheritanceType.SINGLE_TABLE;
}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="strategy" type="orm:inheritance-type"/>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="inheritance-type">
<xsd:annotation>
<xsd:documentation>

public enum InheritanceType { SINGLE_TABLE, TABLE_PER_CLASS, JOINED }

341

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="SINGLE_TABLE"/>
<xsd:enumeration value="JOINED"/>
<xsd:enumeration value="TABLE_PER_CLASS"/>

</xsd:restriction>

</xsd:simpleType>

<I-- -->

<xsd:complexType name="join-column">
<xsd:annotation>
<xsd:documentation>

@Repeatable(JoinColumns.class)
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinColumn {

String name() default "";

String referencedColumnName() default "";

boolean unique() default false;

boolean nullable() default true;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default "";

String options() default "";

String table() default "";

ForeignKey foreignKey() default @ForeignKey();

CheckConstraint[] check() default {};

String comment() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="comment" type="xsd:string" minOccurs="0" />
<xsd:element name="foreign-key" type="orm:foreign-key"
minOccurs="0"/>
<xsd:element name="check-constraint" type="orm:check-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="referenced-column-name" type="xsd:string"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>
<xsd:attribute name="insertable" type="xsd:boolean"/>
<xsd:attribute name="updatable" type="xsd:boolean"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="join-table">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface JoinTable {
String name() default "";
String catalog() default "";
String schema() default "";
JoinColumn[] joinColumns() default {};
JoinColumn[] inverseJoinColumns() default {};

ForeignKey foreignKey() default @ForeignKey(ConstraintMode.PROVIDER_DEFAULT);

342

ForeignKey inverseForeignKey() default @ForeignKey(ConstraintMode.PROVIDER_DEFAULT);

UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};
CheckConstraint[] check() default {};

String comment() default "";

String options() default "";

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="comment" type="xsd:string" minOccurs="0" />

<xsd:

<xsd:element name="join-column" type="orm:join-column"

<xsd:element name="foreign-key" type="orm:foreign-key"

sequence>

minOccurs="0" maxOccurs="unbounded"/>

minOccurs="0"/>

</xsd:sequence>

<xsd:

<xsd:element name="inverse-join-column" type="orm:join-column"

<xsd:element name="inverse-foreign-key" type="orm:foreign-key"

sequence>

minOccurs="0" maxOccurs="unbounded"/>

minOccurs="0"/>

</xsd:sequence>

<xsd:element name="unique-constraint" type="orm:unique-constraint"

<xsd:element name="check-constraint" type="orm:check-constraint"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="index" type="orm:index"
minOccurs="0" maxOccurs="unbounded"/>

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<I--

<xsd:complexType name="1lob">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Lob {}

</xsd:documentation>
</xsd:annotation>
</xsd:complexType>

<I--

<xsd:simpleType name="lock-mode-type">
<xsd:annotation>
<xsd:documentation>

public enum LockModeType implements FindOption, RefreshOption { READ, WRITE, OPTIMISTIC,
OPTIMISTIC_FORCE_INCREMENT, PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT, NONE}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

enumeration
enumeration
enumeration
enumeration
enumeration

value="READ"/>

value="WRITE"/>

value="OPTIMISTIC"/>
value="OPTIMISTIC_FORCE_INCREMENT"/>
value="PESSIMISTIC_READ"/>

343

344

<xsd:enumeration value="PESSIMISTIC_WRITE"/>
<xsd:enumeration value="PESSIMISTIC_FORCE_INCREMENT"/>
<xsd:enumeration value="NONE"/>

</xsd:restriction>
</xsd:simpleType>

<l-- -->

<xsd:complexType name="many-to-many">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToMany {
(lass<?> targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default FetchType.LAZY;

String mappedBy() default "";
}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:element name="order-by" type="orm:order-by"
minOccurs="0"/>
<xsd:element name="order-column" type="orm:order-column"
minOccurs="0"/>
</xsd:choice>
<xsd:choice>
<xsd:element name="map-key" type="orm:map-key"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-class" type="orm:map-key-class"
minOccurs="0"/>
<xsd:choice>
<xsd:element name="map-key-temporal"
type="orm: temporal”
minOccurs="0"/>
<xsd:element name="map-key-enumerated"
type="orm:enumerated"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-attribute-override"
type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="map-key-convert" type="orm:convert"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:choice>
<xsd:choice>
<xsd:element name="map-key-column" type="orm:map-key-column
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-join-column"
type="orm:map-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="map-key-foreign-key"
type="orm: foreign-key"
minOccurs="0"/>
</xsd:sequence>
</xsd:choice>
</xsd:sequence>
</xsd:choice>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>

<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="target-entity" type="xsd:string"/>

<xsd:attribute name="fetch" type="orm:fetch-type"/>

<xsd:attribute name="access" type="orm:access-type"/>

<xsd:attribute name="mapped-by" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="many-to-one">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface ManyToOne {
(lass<?> targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default FetchType.EAGER;
boolean optional() default true;

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:sequence>
<xsd:element name="join-column" type="orm:join-column
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="foreign-key" type="orm:foreign-key'
minOccurs="0"/>
</xsd:sequence>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
</xsd:choice>
<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="optional" type="xsd:boolean"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="maps-id" type="xsd:string"/>
<xsd:attribute name="id" type="xsd:boolean"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="map-key">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKey {

String name() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>

<I-- -->

345

<xsd:complexType name="map-key-class">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKeyClass {
Class<?> value();

}

11></xsd:documentation>
</xsd:annotation>
<xsd:attribute name="class" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="map-key-column">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKeyColumn {

String name() default "";

boolean unique() default false;

boolean nullable() default false;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default "";

String options() default "";

String table() default "";

int length() default 255;

int precision() default @; // decimal precision

int scale() default 0; // decimal scale

}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>
<xsd:attribute name="insertable" type="xsd:boolean"/>
<xsd:attribute name="updatable" type="xsd:boolean"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="length" type="xsd:int"/>
<xsd:attribute name="precision" type="xsd:int"/>
<xsd:attribute name="scale" type="xsd:int"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="map-key-join-column">
<xsd:annotation>
<xsd:documentation>

@Repeatable(MapKeyJoinColumns.class)
@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface MapKeyJoinColumn {

String name() default "";

String referencedColumnName() default "";

boolean unique() default false;

boolean nullable() default false;

boolean insertable() default true;

boolean updatable() default true;

String columnDefinition() default "";

String options() default "";
346

String table() default "";
ForeignKey foreignKey() default @ForeignKey(ConstraintMode.PROVIDER_DEFAULT);
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="foreign-key" type="orm:foreign-key"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="referenced-column-name" type="xsd:string"/>
<xsd:attribute name="unique" type="xsd:boolean"/>
<xsd:attribute name="nullable" type="xsd:boolean"/>
<xsd:attribute name="insertable" type="xsd:boolean"/>
<xsd:attribute name="updatable" type="xsd:boolean"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="mapped-superclass">
<xsd:annotation>
<xsd:documentation>

Defines the settings and mappings for a mapped superclass. Is
allowed to be sparsely populated and used in conjunction with

the annotations. Alternatively, the metadata-complete attribute
can be used to indicate that no annotations are to be processed
If this is the case then the defaulting rules will be recursively
applied.

@Target(TYPE) @Retention(RUNTIME)
public @interface MappedSuperclass {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="id-class" type="orm:id-class" minOccurs="0"/>
<xsd:element name="exclude-default-listeners" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="exclude-superclass-listeners" type="orm:emptyType"
minOccurs="0"/>
<xsd:element name="entity-listeners" type="orm:entity-listeners"
minOccurs="0"/>
<xsd:element name="pre-persist" type="orm:pre-persist" minOccurs="0"/>
<xsd:element name="post-persist" type="orm:post-persist"
minOccurs="0"/>
<xsd:element name="pre-remove" type="orm:pre-remove" minOccurs="0"/>
<xsd:element name="post-remove" type="orm:post-remove" minOccurs="0"/>
<xsd:element name="pre-update" type="orm:pre-update" minOccurs="0"/>
<xsd:element name="post-update" type="orm:post-update" minOccurs="0"/>
<xsd:element name="post-load" type="orm:post-load" minOccurs="0"/>
<xsd:element name="attributes" type="orm:attributes" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="metadata-complete" type="xsd:boolean"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="named-attribute-node">

347

<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)

public @interface NamedAttributeNode {
String value();
String subgraph() default "";
String keySubgraph() default "";

}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="subgraph" type="xsd:string"/>
<xsd:attribute name="key-subgraph" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="named-entity-graph">
<xsd:annotation>
<xsd:documentation>

@Repeatable(NamedEntityGraphs.class)

@Target({TYPE}) @Retention(RUNTIME)

public @interface NamedEntityGraph {
String name() default "";
NamedAttributeNode[] attributeNodes() default {};
boolean includeAllAttributes() default false;
NamedSubgraph[] subgraphs() default {};
NamedSubGraph[] subclassSubgraphs() default {};

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="named-attribute-node"
type="orm:named-attribute-node"
minOccurs="0"
maxOccurs="unbounded" />
<xsd:element name="subgraph"
type="orm:named-subgraph"
minOccurs="0"
max0Occurs="unbounded"/>
<xsd:element name="subclass-subgraph”
type="orm:named-subgraph"
minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="include-all-attributes" type="xsd:boolean"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="named-native-query">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Repeatable(NamedNativeQueries.class)
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedNativeQuery {

String name();

String query();

QueryHint[] hints() default {};

Class<?> resultClass() default void.class;

348

String resultSetMapping() default ""; //named SqlResultSetMapping
EntityResult[] entities() default {};
ConstructorResult[] classes() default {};
ColumnResult[] columns() default {};
}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="query" type="xsd:string"/>
<xsd:element name="hint" type="orm:query-hint"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="entity-result" type="orm:entity-result
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="constructor-result" type="orm:constructor-result
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="column-result" type="orm:column-result"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="result-class" type="xsd:string"/>
<xsd:attribute name="result-set-mapping" type="xsd:string"/>
</xsd:complexType>

n

<l-- -->

<xsd:complexType name="named-query">
<xsd:annotation>
<xsd:documentation>

@Repeatable(NamedQueries.class)
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedQuery {
String name();
String query();
LockModeType lockMode() default LockModeType.NONE;
QueryHint[] hints() default {};
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="query" type="xsd:string"/>
<xsd:element name="lock-mode" type="orm:lock-mode-type" minOccurs="0"/>
<xsd:element name="hint" type="orm:query-hint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="named-stored-procedure-query">
<xsd:annotation>
<xsd:documentation>

@Repeatable(NamedStoredProcedureQueries.class)
@Target({TYPE}) @Retention(RUNTIME)
public @interface NamedStoredProcedureQuery {
String name();
String procedureName();
StoredProcedureParameter[] parameters() default {};
Class[] resultClasses() default {};
String[] resultSetMappings() default{};
QueryHint[] hints() default {};

349

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="parameter"
type="orm:stored-procedure-parameter"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="result-class" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="result-set-mapping" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="hint" type="orm:query-hint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="procedure-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- * * * * * * RN

<xsd:complexType name="named-subgraph">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({}) @Retention(RUNTIME)

public @interface NamedSubgraph {
String name();
(lass<?> type() default void.class;
NamedAttributeNode[] attributeNodes();

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="named-attribute-node"
type="orm:named-attribute-node"
minOccurs="0"
maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="class" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:complexType name="one-to-many">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToMany {
(lass<?> targetEntity() default void.class;
CascadeType[] cascade() default {};
FetchType fetch() default FetchType.LAZY;

String mappedBy() default "";
boolean orphanRemoval() default false;

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:choice>
<xsd:element name="order-by" type="orm:order-by
minOccurs="0"/>
<xsd:element name="order-column" type="orm:order-column"

350

minOccurs="0"/>
</xsd:choice>
<xsd:choice>
<xsd:element name="map-key" type="orm:map-key"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-class" type="orm:map-key-class"
minOccurs="0"/>
<xsd:choice>
<xsd:element name="map-key-temporal"
type="orm: temporal”
minOccurs="0"/>
<xsd:element name="map-key-enumerated"
type="orm:enumerated"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-attribute-override"
type="orm:attribute-override"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="map-key-convert" type="orm:convert"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:choice>
<xsd:choice>
<xsd:element name="map-key-column" type="orm:map-key-column
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="map-key-join-column"
type="orm:map-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="map-key-foreign-key"
type="orm: foreign-key"
minOccurs="0"/>
</xsd:sequence>
</xsd:choice>
</xsd:sequence>
</xsd:choice>
<xsd:choice>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>
<xsd:sequence>
<xsd:element name="join-column" type="orm:join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="foreign-key" type="orm:foreign-key"
minOccurs="0"/>
</xsd:sequence>
</xsd:choice>
<xsd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="target-entity" type="xsd:string"/>
<xsd:attribute name="fetch" type="orm:fetch-type"/>
<xsd:attribute name="access" type="orm:access-type"/>
<xsd:attribute name="mapped-by" type="xsd:string"/>
<xsd:attribute name="orphan-removal" type="xsd:boolean"/>

</xsd:complexType>

<I--

<xsd:complexType name="one-to-one">

<xsd:annotation>

<xsd:documentation><![CDATA[

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OneToOne {
(lass<?> targetEntity() default void.class;

351

11
</xs
<xsd

<X

</
<X

</Xs

<xsd:
<xsd:

<xsd

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

</xsd:

CascadeType[] cascade() default {};
FetchType fetch() default FetchType.EAGER;
boolean optional() default true;

String mappedBy() default "";

boolean orphanRemoval() default false;

}

></xsd:documentation>
d:annotation>
:sequence>
sd:choice>
<xsd:sequence>
<xsd:element name="primary-key-join-column"
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="primary-key-foreign-key"
type="orm:foreign-key"
minOccurs="0"/>
</xsd:sequence>
<xsd:sequence>
<xsd:element name="join-column" type="orm:join-column
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="foreign-key" type="orm:foreign-key'
minOccurs="0"/>
</xsd:sequence>
<xsd:element name="join-table" type="orm:join-table"
minOccurs="0"/>

xsd:choice>
sd:element name="cascade" type="orm:cascade-type"
minOccurs="0"/>
d:sequence>
attribute name="name" type="xsd:string" use="required"/>
attribute name="target-entity" type="xsd:string"/>
:attribute name="fetch" type="orm:fetch-type"/>
attribute name="optional" type="xsd:boolean"/>
attribute name="access" type="orm:access-type"/>
attribute name="mapped-by" type="xsd:string"/>
attribute name="orphan-removal" type="xsd:boolean"/>
attribute name="maps-id" type="xsd:string"/>
attribute name="id" type="xsd:boolean"/>
complexType>

<I--

<xsd:s
<xsd
<X

</
</xs
<xsd
</xsd:

impleType name="order-by">
:annotation>
sd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderBy {

String value() default "";
}

xsd:documentation>

d:annotation>

rrestriction base="xsd:string"/>
simpleType>

<I--
<xsd:c

<xsd
<X

352

omplexType name="order-column">
:annotation>
sd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface OrderColumn {

String name() default "";

boolean nullable() default true;
boolean insertable() default true;
boolean updatable() default true;
String columnDefinition() default "";

String options() default "";
}

</xsd:documentation>

</xsd:annotation>

<xsd:attribute name="name" type="xsd:string"/>

<xsd:attribute name="nullable" type="xsd:boolean"/>

<xsd:attribute name="insertable" type="xsd:boolean"/>

<xsd:attribute name="updatable" type="xsd:boolean"/>

<xsd:attribute name="column-definition" type="xsd:string"/>

<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:simpleType name="parameter-mode">
<xsd:annotation>
<xsd:documentation>

public enum ParameterMode { IN, INOUT, OUT, REF_CURSOR }

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:token">
<xsd:enumeration value="IN"/>
<xsd:enumeration value="INOUT"/>
<xsd:enumeration value="0UT"/>
<xsd:enumeration value="REF_CURSOR"/>

</xsd:restriction>

</xsd:simpleType>

<l-- >

<xsd:complexType name="post-load">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD}) @Retention(RUNTIME)
public @interface Postload {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="post-persist">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostPersist {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>

353

</xsd:complexType>

<l--

<xsd:complexType name="post-remove">
<xsd:annotation>
<xsd:documentation>

@Target ({METHOD}) @Retention(RUNTIME)
public @interface PostRemove {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string"

</xsd:sequence>

<xsd:attribute name="method-name" type="xsd:string"

</xsd:complexType>

minOccurs="0"/>

use="required"/>

<l--

<xsd:complexType name="post-update">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD}) @Retention(RUNTIME)
public @interface PostUpdate {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string"

</xsd:sequence>

<xsd:attribute name="method-name" type="xsd:string"

</xsd:complexType>

minOccurs="0"/>

use="required"/>

<l--

<xsd:complexType name="pre-persist">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD}) @Retention(RUNTIME)
public @interface PrePersist {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string"

</xsd:sequence>

<xsd:attribute name="method-name" type="xsd:string"

</xsd:complexType>

minOccurs="0"/>

use="required"/>

<I--

<xsd:complexType name="pre-remove">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreRemove {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string"

</xsd:sequence>

354

minOccurs="0"/>

<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="pre-update">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD}) @Retention(RUNTIME)
public @interface PreUpdate {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="method-name" type="xsd:string" use="required"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="primary-key-join-column">
<xsd:annotation>
<xsd:documentation>

@Repeatable(PrimaryKeyJoinColumns.class)
@Target({TYPE, METHOD, FIELD}) @Retention(RUNTIME)
public @interface PrimaryKeyJoinColumn {
String name() default "";
String referencedColumnName() default "";
String columnDefinition() default "";
String options() default "";
ForeignKey foreignKey() default @ForeignKey(PROVIDER_DEFAULT);

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="foreign-key" type="orm:foreign-key"

minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="referenced-column-name" type="xsd:string"/>
<xsd:attribute name="column-definition" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<l e o o o o -->

<xsd:complexType name="query-hint">
<xsd:annotation>
<xsd:documentation>

@Target({}) @Retention(RUNTIME)
public @interface QueryHint {
String name();
String value();
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="value" type="xsd:string" use="required"/>

355

</xsd:complexType>

<l-- -=>

<xsd:complexType name="secondary-table">
<xsd:annotation>
<xsd:documentation>

@Repeatable(SecondaryTables.class)

@Target({TYPE}) @Retention(RUNTIME)

public @interface SecondaryTable {
String name();
String catalog() default "";
String schema() default "";
PrimaryKeyJoinColumn[] pkJoinColumns() default {};
ForeignKey foreignKey() default @ForeignKey(ConstraintMode.PROVIDER_DEFAULT);
UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};
CheckConstraint[] check() default {};

String comment() default "";

String options() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:sequence>
<xsd:element name="comment" type="xsd:string" minOccurs="0" />
<xsd:element name="primary-key-join-column"
type="orm:primary-key-join-column"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="primary-key-foreign-key"
type="orm: foreign-key"
minOccurs="0"/>
</xsd:sequence>
<xsd:element name="unique-constraint” type="orm:unique-constraint"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="index" type="orm:index"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="foreign-key" type="orm:foreign-key"
minOccurs="0"/>
<xsd:element name="check-constraint" type="orm:check-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<l-- >

<xsd:complexType name="sequence-generator">
<xsd:annotation>
<xsd:documentation>

@Repeatable(SequenceGenerators.class)
@Target({TYPE, METHOD, FIELD, PACKAGE}) @Retention(RUNTIME)
public @interface SequenceGenerator {

String name() default "";

String sequenceName() default "";

String catalog() default "";

String schema() default "";

int initialValue() default 1;

int allocationSize() default 50;

String options() default "";

356

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="description" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="sequence-name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="allocation-size" type="xsd:int"/>
<xsd:attribute name="options" type="xsd:string"/>

</xsd:complexType>

<l-- -->

<xsd:complexType name="sql-result-set-mapping">
<xsd:annotation>
<xsd:documentation>

@Repeatable(SqlResultSetMappings.class)

@Target({TYPE}) @Retention(RUNTIME)

public @interface SqlResultSetMapping {
String name();
EntityResult[] entities() default {};
ConstructorResult[] classes() default{};
ColumnResult[] columns() default {};

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="entity-result" type="orm:entity-result"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="constructor-result" type="orm:constructor-result"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="column-result" type="orm:column-result"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="stored-procedure-parameter">
<xsd:annotation>
<xsd:documentation><![CDATA[

@Target({}) @Retention(RUNTIME)

public @interface StoredProcedureParameter {
String name() default "";
ParameterMode mode() default ParameterMode.IN;
Class<?> type();

}

11></xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="class" type="xsd:string" use="required"/>
<xsd:attribute name="mode" type="orm:parameter-mode"/>
</xsd:complexType>

357

<l-- >

<xsd:complexType name="table">
<xsd:annotation>
<xsd:documentation>

@Target({TYPE}) @Retention(RUNTIME)
public @interface Table {
String name() default "";
String catalog() default "";
String schema() default "";
UniqueConstraint[] uniqueConstraints() default {};
Index[] indexes() default {};
CheckConstraint[] check() default {};

String comment() default "";

String options() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="comment" type="xsd:string" minOccurs="0" />
<xsd:element name="unique-constraint” type="orm:unique-constraint"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="index" type="orm:index"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="check-constraint" type="orm:check-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<I-- -=>

<xsd:complexType name="table-generator">
<xsd:annotation>
<xsd:documentation>

@Repeatable(TableGenerators.class)
@Target({TYPE, METHOD, FIELD, PACKAGE}) @Retention(RUNTIME)
public @interface TableGenerator {
String name() default "";
String table() default "";
String catalog() default "";
String schema() default "";
String pkColumnName() default "";
String valueColumnName() default "";
String pkColumnValue() default "";
int initialValue() default 0;
int allocationSize() default 50;
UniqueConstraint[] uniqueConstraints() default {};
Indexes[] indexes() default {};

String options() default "";
}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="description" type="xsd:string" minOccurs="0"/>
<xsd:element name="unique-constraint” type="orm:unique-constraint"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="index" type="orm:index"
minOccurs="0" maxOccurs="unbounded"/>

358

<xsd:element name="check-constraint" type="orm:check-constraint"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="table" type="xsd:string"/>
<xsd:attribute name="catalog" type="xsd:string"/>
<xsd:attribute name="schema" type="xsd:string"/>
<xsd:attribute name="pk-column-name" type="xsd:string"/>
<xsd:attribute name="value-column-name" type="xsd:string"/>
<xsd:attribute name="pk-column-value" type="xsd:string"/>
<xsd:attribute name="initial-value" type="xsd:int"/>
<xsd:attribute name="allocation-size" type="xsd:int"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<l-- -->

<xsd:simpleType name="temporal">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Temporal {

TemporalType value();
}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="orm:temporal-type"/>
</xsd:simpleType>

Clon HEKA N

<xsd:simpleType name="temporal-type">
<xsd:annotation>
<xsd:documentation>

@Deprecated(since = "3.2")
public enum TemporalType {
DATE, // java.sql.Date
TIME, // java.sql.Time
TIMESTAMP // java.sql.Timestamp
}

</xsd:documentation>
</xsd:annotation>
<xsd:restriction base="xsd:token">
<xsd:enumeration value="DATE"/>
<xsd:enumeration value="TIME"/>
<xsd:enumeration value="TIMESTAMP"/>
</xsd:restriction>
</xsd:simpleType>

<I-- -->

<xsd:complexType name="transient">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Transient {}

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string" use="required"/>
</xsd:complexType>

359

<l-- -->

<xsd:complexType name="unique-constraint">
<xsd:annotation>
<xsd:documentation>

@Target({}) ©Retention(RUNTIME)
public @interface UniqueConstraint {
String name() default "";
String[] columnNames();
String options() default "";

}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>

<xsd:element name="column-name" type="xsd:string"

maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
<xsd:attribute name="options" type="xsd:string"/>
</xsd:complexType>

<I-- -->

<xsd:complexType name="version">
<xsd:annotation>
<xsd:documentation>

@Target({METHOD, FIELD}) @Retention(RUNTIME)
public @interface Version {}

</xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="column" type="orm:column" minOccurs="0"/>
<xsd:element name="temporal" type="orm:temporal" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="access" type="orm:access-type"/>
</xsd:complexType>

</xsd:schema>

360

Related Documents

= [1] Jakarta Persistence, v. 2.2. https://jakarta.ee/specifications/persistence/2.2/.

= [2] SQL 2003, Part 2, Foundation (SQL/Foundation). ISO/IEC 9075-2:2003.

= [3] JDBC 4.3 Specification. http://jcp.org/en/jsr/detail?id=221.

= [4] Enterprise JavaBeans, v. 2.1.

= [5] Jakarta Bean Validation, v. 3.0. https://jakarta.ee/specifications/bean-validation/3.0/.

= [6] Jakarta EE Platform, v. 9.0. https://jakarta.ee/specifications/platform/9/.

= [7] Jakarta Contexts and Dependency Injection, v 3.0. https://jakarta.ee/specifications/cdi/3.0/.

361

https://jakarta.ee/specifications/persistence/2.2/
http://jcp.org/en/jsr/detail?id=221
https://jakarta.ee/specifications/bean-validation/3.0/
https://jakarta.ee/specifications/platform/9/
https://jakarta.ee/specifications/cdi/3.0/

Appendix A: Revision History

This appendix lists the significant changes that have been made during the development of the Jakarta Persistence
specification.

A.1. Jakarta Persistence 3.2

Added support for Java record types as embeddable classes

Added support for java.time.Instant and java.time.Year and clarified JDBC mappings for basic types
Added union, intersect, except, cast, left, right, and replace for Jakarta Persistence QL and criteria queries
Added || string concatenation operator and id and version functions to Jakarta Persistence QL

Added CriteriaSelect to the Criteria API

Added extract() to CriteriaBuilder

Added subquery(EntityType) to CommonAbstractCriteria

Added support for specifying null precedence when ordering Jakarta Persistence QL and criteria queries
Added getSingleResultOrNull() to Query, TypedQuery, StoredProcedureQuery

Added entities(), classes() and columns() to NamedNativeQuery

Added 1lockMode() to EntityResult with the default being OPTIMISTIC

Added getVersion(), isLoaded(), load(), isInstance() and getClass() methods to PersistenceUnitUtil

Added overload of entity() accepting an entity name to Metamodel

Added javax.annotation.processing.Generated to the list of defined annotations on StaticMetamodel

Added joins on EntityTypes

Added constants for managed types, named queries, named graphs and named result set mappings to generated
StaticMetamodel

Added LocalDateTime and Instant to supported Version types

Added where(), having(), and(), or(), array(), tuple() overloads accepting List to CriteriaQuery and CriteriaBuilder
Added equalTo() and notEqualTo() to Expression

Added concat() overload accepting list of expressions to CriteriaBuilder

Added Graph interface as parent of EntityGraph and Subgraph and moved common operations there

Added addAttributeNode(), removeAttributeNode(), addTreatedSubgraph(), addElementSubgraph(), addTreatedElementSubgraph(),
addMapKeySubgraph(), and addTreatedMapKeySubgraph() methods to Graph

Added find(), refresh(), lock() overloads to EntityManager taking newly introduced FindOptions, RefreshOptions, and
LockOptions respectively

Added setCacheStoreMode(), and setCacheRetreiveMode() methods to EntityManager and Query
Added getReference overload to EntityManager

Added runWithConnection() and callWithConnection() to EntityManager

362

Added runInTransaction() and callInTransaction() to EntityManagerFactory

Added getName() to EntityManagerFactory

Added setTimeout(Integer) and getTimeout() to EntityTransaction

Added programmatic API to obtain EntityManagerFactory using PersistenceConfiguration

Added constants for properties defined by the specification to the PersistenceConfiguration
Added SchemaManager API

Added options member to elements which result in DDL generation

Added EnumeratedValue allowing custom mapping of fields of Java enums

Added comment and check members to @Table and @Column annotations, along with @CheckConstraint
Added secondPrecision to @Column annotation and clarified semantics of @Column members

Added factory-level access to named queries and named entity graphs, along with TypedQueryReference
Added integration points for dependency injection

Allowed scalar expressions in the ORDER BY clause in Jakarta Persistence QL

Made the name member of TableGenerator and SequenceGenerator optional and allow usage of these annotations at the java
package level

Made identification variables and the SELECT clause in Jakarta Persistence QL optional

Clarified the primary key types supported for each GenerationType

Clarified availability of SEQUENCE, TABLE and UUID generated IDs on PrePersist

Clarified semantics of numeric literals and numeric type promotions, and added support for bi and bd suffixes
Clarified semantics of Convert/Converter annotations

Clarified rules around distinction of entity names and identification variables and case-sensitivity in Jakarta
Persistence QL queries

Clarified the semantics of Bindable.ENTITY_TYPE in javadoc

Clarified the semantics of collection-valued query parameters

Entity and embeddable classes may now be static inner classes

Primary key classes are no longer required to be public and serializable

Pulled getParameters() up from CriteriaQuery to CommonAbstractCriteria

Updated persistence and object/relational mapping schemas

Fixed wildcard types in addSubgraph and addAttributeNode in Graph

Fixed lower type bounds to the Path.get entity argument X

Fixed example code in the javadoc of AttributeOverrides

Fixed max0ccurs of the version element in ORM schema to allow at most one element

Partially fixed raw types warnings through the API

363

Improved AsciiDoc formatting and fixed typos through the specification document

A.1.1. Deprecations

Deprecated usage of Calendar, Date, Time, Timestamp, Temporal, MapKeyTemporal and TemporalType in new applications in favour
of java.time API

Deprecated use of Byte[] and Character[] arrays types for basic attributes, in favor of primitive array types

Deprecated multiselect methods in CriteriaQuery. The preference is to use array or tuple method defined in
CriteriaBuilder

A.1.2. Deprecations for removal

Deprecated addSubclassSubgraph() in EntityGraph for removal; addTreatedSubgraph() method should be used as direct
replacement

Deprecated addSubgraph(Attribute, Class) and addKeySubgraph() in Graph/EntityGraph/SubGraph for removal;
addTreatedSubgraph(Attribute, Class) and addMapKeySubgraph() methods should be used as direct replacements

Deprecated jakarta.persistence.spi.PersistencelUnitTransactionType for removal;

jakarta.persistence.PersistenceUnitTransactionType methods should be used as direct replacement

Deprecated default public no-arg constructor in jakarta.persistence.Persistence and PERSISTENCE_PROVIDER and providers
fields in this class for removal with no replacement. This class is not designed for extensibility

A.2.Jakarta Persistence 3.1

EntityManagerFactory and EntityManager interfaces extend java.lang.AutoCloseable interface
Fixed ClassTransformer.transform to throw Persistence API specific exception
Added support for java.util.UUID and GenerationType.UUID

Added CEILING, EXP, FLOOR, LN, POWER, ROUND, and SIGN numeric functions to Jakarta Persistence QL and ceiling(), exp(),
floor (), 1n(), power (), round(), and sign() to Criteria API

Added LOCAL DATE, LOCAL DATETIME, and LOCAL TIME functions to Jakarta Persistence QL and corresponding localDate(),
localDateTime(), and localTime() to Criteria API

Added EXTRACT function to Jakarta Persistence QL

Added support for Expressions as conditions in Criteria CASE expressions

Clarified mixing types of query input parameters

Added missing definition of single_valued_embeddable_object_field in Jakarta Persistence QL BNF
Clarified definition of the Basic type

Clarified the order of parameters in the LOCATE function

Clarified SqlResultSetMapping with multiple EntityResults and conflicting aliases

A.3.Jakarta Persistence 3.0
Created document from Java Persistence 2.2 Final Release specification.

364

The document was converted to Asciidoc format.

Packages of all API classes were changed to jakarta.persistence. These changes are reflected in the specification
document.

Schema namespaces were changed from http://xmlns.jcp.org/xml/ns/persistence and http://xmlns.jcp.org/xml/ns/
persistence/orm to https://jakarta.ee/xml/ns/persistence and https://jakarta.ee/xml/ns/persistence/orm

References to schema versions lower than 2.2 were removed.

A.4.]Java Persistence 2.2 (Maintenance Release Draft)

Created document from Java Persistence 2.1 Final Release specification.
The following annotations have been marked @Repeatable:

* AssociationOverride
e AttributeOverride

e Convert

* JoinColumn

* MapKeyJoinColumn

e NamedEntityGraph

e NamedNativeQuery

e NamedQuery

* NamedStoredProcedureQuery
* PersistenceContext

* Persistencelnit

* PrimaryKeyJoinColumn
e SecondaryTable

e SqlResultSetMapping
e SequenceGenerator

e TableGenerator
Added SequenceGenerators and TableGenerators annotations.
Added support for CDI injection into AttributeConverter classes.
Added support for the mapping of the following java.time types:

* java.time.lLocalDate

* java.time.LocalTime

* java.time.LocalDateTime
* java.time.OffsetTime

* java.time.OffsetDateTime
Added default Stream getResultStream() method to Query interface.
Added default Stream<X> getResultStream() method to TypedQuery interface.

Replaced reference to JAR file specification in persistence provider bootstrapping section with more general reference
to Java SE service provider requirements.

Updated persistence.xml and orm.xml schemas to 2.2 versions.

365

http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/orm
http://xmlns.jcp.org/xml/ns/persistence/orm
https://jakarta.ee/xml/ns/persistence
https://jakarta.ee/xml/ns/persistence/orm

Updated Related Documents.

366

Appendix B: Persistence API Interfaces

The following APIs are defined in the package jakarta.persistence.

B.1. EntityManager

package jakarta.persistence;

import java.util.Map;
import java.util.List;

import jakarta.persistence.criteria.CriteriaSelect;
import jakarta.persistence.metamodel.Metamodel;
import jakarta.persistence.criteria.CriteriaBuilder;
import jakarta.persistence.criteria.CriteriaQuery;
import jakarta.persistence.criteria.Criterialpdate;
import jakarta.persistence.criteria.CriteriaDelete;

/**

Interface used to interact with the persistence context.

<p>An instance of {@code EntityManager} must be obtained from
an {@link EntityManagerFactory}, and is only able to manage
persistence of entities belonging to the associated persistence
unit.

<p>An application-managed {@code EntityManager} may be created
via a call to {@link EntityManagerFactory#createEntityManager()}.
The {@code EntityManager} must be explicitly closed via a call
to {@link #close()}, to allow resources to be cleaned up by the
persistence provider. This approach places almost complete
responsibility for cleanup and exception management on the client,
and is thus considered quite error-prone. It is much safer to use
the methods {@link EntityManagerFactory#runInTransaction} and
{@link EntityManagerFactory#callInTransaction}.
{@snippet :
entityManagerFactory.runInTransaction(entityManager -> {

// do work in a persistence context

L
}

<p>In the Jakarta EE environment, a container-managed

{@link EntityManager} may be obtained by dependency injection,
using {@link PersistenceContext}.

{@snippet :

// inject the container-managed entity manager
@PersistenceContext(unitName="orderMgt")

EntityManager entityManager;

}

<p>If the persistence unit has

{@linkplain PersistenceUnitTransactionType#RESOURCE_LOCAL

resource local} transaction management, transactions must

be managed using the {@link EntityTransaction} obtained by
calling {@link #getTransaction()}.

<p>A complete idiom for custom application management of

the {@link EntityManager} and its associated resource-local

{@link EntityTransaction} is as follows:

{@snippet :

EntityManager entityManager = entityManagerFactory.createEntityManager();
EntityTransaction transaction = entityManager.getTransaction();

try {

L T B R T T N I R R I R R T R R S R T R R R R N R N R R

367

368

transaction.begin();

// do work
transaction.commit();
}
catch (Exception e) {
if (transaction.isActive()) transaction.rollback();
throw e;
}
finally {

entityManager.close();
}
}

<p>Each {@code EntityManager} instance is associated with a
distinct persistence context. A persistence context
is a set of entity instances in which for any given persistent
entity identity (defined by an entity type and primary key)
there is at most one entity instance. The entity instances
associated with a persistence context are considered managed
objects, with a well-defined lifecycle under the control of
the persistence provider.

<p>Any entity instance can be characterized as being in one of

the following lifecycle states:

A new entity has no persistent identity, and is
not yet associated with any persistence context.

A managed entity is an instance with a persistent
identity that is currently associated with a persistence
context.

A detached entity is an instance with a persistent
identity that is not (or no longer) associated with any
active persistence context.

A removed entity is an instance with a persistent
identity, and associated with a persistence context, that
is scheduled for removal from the database upon transaction
commit.

<p>The {@code EntityManager} API is used to perform operations
that affect the state of the persistence context, or that modify
the lifecycle state of individual entity instances. The client
may {@linkplain #persist} and {@linkplain #remove} instances,
{@linkplain #find(Class, Object) find} entities by their primary
key, and execute {@linkplain #createQuery(String) queries} which
range over entity types. An entity may be disassociated from

the persistence context by calling {@link #detach}, and a
persistence context may be completely cleared, detaching all

its entities, by calling {@link #clear()}.

<p>The client may also make changes to the state of an entity
instance by mutating the entity directly, or it may request
that the state of a detached instance be {@linkplain #merge
merged}, replacing the state of a managed instance with the
same persistent identity. Note that there is no explicit
"update" operation; since an entity is a managed object,
modifications to its persistent fields and properties are
automatically detected, as long as it is associated with an
active persistence context.

<p>Modifications to the state of entities associated with a
persistence context are not immediately synchronized with the
database. Synchronization happens during a process called
flush. The timing of the flush process depends on the
{@linkplain FlushModeType flush mode}, which may be set
explicitly by calling {@link #setFlushMode(FlushModeType)}.

For {@link FlushModeType#COMMIT}, the persistence context
is flushed before the transaction commits.

For {@link FlushModeType#AUTO}, which is the default, the
persistence context must also be flushed before execution
of any query whose result set would be affected by
unflushed modifications to entities associated with the
persistence context.

The client may force an immediate flush to occur by calling

{@link #flush()}.

<p>At any given moment, a persistence context might hold an
optimistic or pessimistic lock on an entity instance.
The full range of possible lock types is enumerated by

{@link LockModeType}. Some operations of this interface,
including the methods {@link #lock(Object, LockModeType)},
{@link #refresh(Object, LockModeType)}, and

{@link #find(Class, Object, LockModeType)}, accept an explicit
{@link LockModeType}, allowing the client to request a specific
type of lock.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* <p>Interaction of the persistence context (or first-level cache)
* with the second-level cache, if any, may be controlled by

* calling {@link #setCacheRetrieveMode(CacheRetrieveMode)} and

* {@Llink #setCacheStoreMode(CacheStoreMode)}.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

<p>Some operations accept one or more built-in and vendor-specific

options:

{@link #find(Class, Object, FindOption...)} and
{@link #find(EntityGraph, Object, FindOption...)} accept
{@link FindOption}s,

{@link #refresh(Object, RefreshOption...)} accepts
{@link RefreshOption}s, and

{@link #lock(Object, LockModeType, LockOption...)} accepts
{@link LockOption}s.

@see Query

@see TypedQuery

@see CriteriaQuery

@see PersistenceContext
@see StoredProcedureQuery
@see EntityManagerFactory

@since 1.0
*/
public interface EntityManager extends AutoCloseable {

~
*
*

Make a new entity instance managed and persistent, resulting in
its insertion in the database when the persistence context is
synchronized with the database, or make a removed entity managed,
undoing the effect of a previous call to {@link #remove(Object)}.
This operation cascades to every entity related by an association
marked {@link CascadeType#PERSIST cascade=PERSIST}. If the given
entity instance is already managed, that is, if it already belongs
to this persistence context, and has not been marked for removal,
it is itself ignored, but the operation still cascades.

@param entity a new, managed, or removed entity instance

@throws EntityExistsException if the given entity is detached

(if the entity is detached, the {@code EntityExistsException}

may be thrown when the persist operation is invoked, or the

{@code EntityExistsException} or another {@code PersistenceException}
may be thrown at flush or commit time)

@throws I1legalArgumentException if the given instance is not an

E I N S T R R R

369

* entity
* @throws TransactionRequiredException if there is no transaction

* when invoked on a container-managed entity manager that
* is of type {@link PersistenceContextType#TRANSACTION}
*/

void persist(Object entity);

~
*
*

Merge the state of the given new or detached entity instance

into the current persistence context, resulting in, respectively,
an insert or possible update when the persistence context is
synchronized with the database. Return a managed instance with
the same persistent state as the given entity instance, but a
distinct Java object identity. If the given entity is detached,
the returned entity has the same persistent identity. This
operation cascades to every entity related by an association
marked {@link CascadeType#MERGE cascade=MERGE}. If the given
entity instance is managed, that is, if it belongs to this
persistence context, and has not been marked for removal, it is
itself ignored, but the operation still cascades, and it is
returned directly.

@param entity a new, managed, or detached entity instance
@return the managed instance that the state was merged to

* @throws IllegalArgumentException if the instance is not an entity
* or is a removed entity

* @throws TransactionRequiredException if there is no transaction
* when invoked on a container-managed entity manager of

* that is of type {@link PersistenceContextType#TRANSACTION}
*/

<T> T merge(T entity);

L N S R T R T

~
*
*

Mark a managed entity instance as removed, resulting in its deletion
from the database when the persistence context is synchronized with
the database. This operation cascades to every entity related by an
association marked {@link CascadeType#REMOVE cascade=REMOVE}. If the
given entity instance is already removed, it is ignored. If the
given entity is new, it is itself ignored, but the operation still
cascades.

@param entity a managed, new, or removed entity instance

* @throws IllegalArgumentException if the instance is not an entity

* %k X X Xk *

* or is a detached entity

* @throws TransactionRequiredException if invoked on a

* container-managed entity manager of type

* {@link PersistenceContextType#TRANSACTION} and there is
* no transaction

*/

void remove(Object entity);

/**

* Find by primary key.

* Search for an entity of the specified class and primary key.

* If the entity instance is contained in the persistence context,
* it is returned from there.

* @param entityClass entity class

*

@param primaryKey primary key
* @return the found entity instance or null if the entity does

* not exist

* @throws IllegalArgumentException if the first argument does

* not denote an entity type or if the second argument is
* not a valid type for that entity's primary key or is

* null

*/

<T> T find(Class<T> entityClass, Object primaryKey);

/**

* Find by primary key, using the specified properties.

370

* Search for an entity of the specified class and primary key.
* If the entity instance is contained in the persistence

* context, it is returned from there.

* If a vendor-specific property or hint is not recognized,

* it is silently ignored.

* @param entityClass entity class

* @param primaryKey primary key

* @param properties standard and vendor-specific properties

* and hints

* @return the found entity instance or null if the entity does
* not exist

* @throws IllegalArgumentException if the first argument does
* not denote an entity type or if the second argument
* is not a valid type for that entity's primary key or
* is null

* @since 2.0

*/

<T> T find(Class<T> entity(Class, Object primaryKey,
Map<String, Object> properties);

~
*
*

Find by primary key and obtain the given lock type for the
resulting entity. Search for an entity of the specified class and
primary key, and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context,
it is returned from there, and the effect of this method is the
same as if the {@link #lock} method had been called on the entity.
<p> If the entity is found within the persistence context and
the lock mode type is pessimistic and the entity has a version
attribute, the persistence provider must perform optimistic
version checks when obtaining the database lock. If these checks
fail, the {@link OptimisticLockException} is thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

the {@link PessimisticLockException} is thrown if the
database locking failure causes transaction-level rollback
the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback

@param entityClass entity class
@param primaryKey primary key
@param lockMode 1lock mode
@return the found entity instance or null if the entity does
not exist
@throws I1legalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null
@throws TransactionRequiredException if there is no
transaction and a lock mode other than {@code NONE} is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than {@code NONE} is specified
@throws OptimisticLockException if the optimistic version
check fails
@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
@throws PersistenceException if an unsupported lock call is made
* @since 2.0
*/
<T> T find(Class<T> entityClass, Object primaryKey,
LockModeType lockMode);

EEE I T R T R I S T N R R R N R N I R T T I R

/**

371

372

Find by primary key and lock the entity, using the specified
properties. Search for an entity of the specified class and
primary key, and lock it with respect to the specified lock type.
If the entity instance is contained in the persistence context,
it is returned from there.
<p> If the entity is found within the persistence context and
the lock mode type is pessimistic and the entity has a version
attribute, the persistence provider must perform optimistic
version checks when obtaining the database lock. If these checks
fail, the {@link OptimisticLockException} is thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

the {@link PessimisticLockException} is thrown if the
database locking failure causes transaction-level rollback
the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific property or hint is not recognized,
it is silently ignored.
<p>Portable applications should not rely on the standard
timeout hint. Depending on the database in use and the locking
mechanisms used by the provider, the hint may or may not be
observed.
@param entityClass entity class
@param primaryKey primary key
@param lockMode 1lock mode
* @param properties standard and vendor-specific properties
* and hints
* @return the found entity instance or null if the entity does
* not exist
* @throws IllegalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null
@throws TransactionRequiredException if there is no
transaction and a lock mode other than {@code NONE} is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than {@code NONE} is specified
@throws OptimisticLockException if the optimistic version check
fails
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking fails and
* only the statement is rolled back
* @throws PersistenceException if an unsupported lock call is made
* @since 2.0
*/

EEE S T R T R R R I R R N R R T

EE R T I T

<T> T find(Class<T> entityClass, Object primaryKey,

LockModeType lockMode,
Map<String, Object> properties);

~
*
*

Find an instance of the given entity class by primary key,
using the specified {@linkplain FindOption options}.

Search for an entity with the specified class and primary key.
If the given options include a {@link LockModeType}, lock it
with respect to the specified lock type.

If the entity instance is contained in the persistence context,
it is returned from there.

<p>If the entity is found within the persistence context and
the lock mode type is pessimistic and the entity has a version
attribute, the persistence provider must perform optimistic
version checks when obtaining the database lock. If these checks
fail, the {@code OptimisticLockException} is thrown.

<p>If the lock mode type is pessimistic and the entity instance

L I R T T R

is found but cannot be locked:

the {@code PessimisticLockException} is thrown if the
database locking failure causes transaction-level
rollback
the {@code LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific {@linkplain FindOption option} is not
recognized, it is silently ignored.
<p>Portable applications should not rely on the standard
{@linkplain Timeout timeout option}. Depending on the database
in use and the locking mechanisms used by the provider, this
option may or may not be observed.
@param entityClass entity class
@param primaryKey primary key
@param options standard and vendor-specific options
@return the found entity instance or null if the entity does
not exist
@throws I1legalArgumentException if there are contradictory
options, if the first argument does not denote an entity
type belonging to the persistence unit, or if the second
argument is not a valid non-null instance of the entity
primary key type
@throws TransactionRequiredException if there is no transaction
and a lock mode other than {@code NONE} is
specified or if invoked on an entity manager which has
not been joined to the current transaction and a lock
mode other than {@code NONE} is specified
@throws OptimisticLockException if the optimistic version check
fails
@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking fails and
* only the statement is rolled back
* @throws PersistenceException if an unsupported lock call is made
* @since 3.2
*/
<T> T find(Class<T> entity(Class, Object primaryKey,
FindOption... options);

EE I S T R R R R I . R R S I R N

~
*
*

Find an instance of the root entity of the given {@link EntityGraph}

by primary key, using the specified {@linkplain FindOption options},

and interpreting the {@code EntityGraph} as a load graph.

Search for an entity with the specified type and primary key.

If the given options include a {@link LockModeType}, lock it

with respect to the specified lock type.

If the entity instance is contained in the persistence context,

it is returned from there.

<p> If the entity is found within the persistence context and

the lock mode type is pessimistic and the entity has a version

attribute, the persistence provider must perform optimistic

version checks when obtaining the database lock. If these checks

fail, the {@code OptimisticLockException} is thrown.

<p>If the lock mode type is pessimistic and the entity instance

is found but cannot be locked:

the {@link PessimisticlLockException} is thrown if the
database locking failure causes transaction-level rollback

the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific {@linkplain FindOption option} is not

recognized, it is silently ignored.

<p>Portable applications should not rely on the standard

{@linkplain Timeout timeout option}. Depending on the database

EE S D R T R S T R R I I R

373

374

@return

@throws

@throws

in use and the locking mechanisms used by the provider, this
option may or may not be observed.

@param entityGraph entity graph interpreted as a load graph
@param primaryKey primary key

@param options standard and vendor-specific options

the found entity instance or null if the entity does

not exist

I1legalArgumentException if there are contradictory
options, if the first argument does not denote an entity
type belonging to the persistence unit, or if the second
argument is not a valid non-null instance of the entity
primary key type

TransactionRequiredException if there is no transaction
and a lock mode other than {@code NONE} is

specified or if invoked on an entity manager which has

EE S D R R R R R R I R

not been joined to the current transaction and a lock
mode other than {@code NONE} is specified

@throws OptimisticlLockException if the optimistic version check
fails

@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call is made

@since 3.2
*/
<T> T find(EntityGraph<T> entityGraph, Object primaryKey,
FindOption... options);
/**

<T>

~
*
*

* % ¥ ¥k kX X *

*

Obtain a reference to an instance of the given entity class

with the given primary key, whose state may be lazily fetched.

<p>If the requested instance does not exist in the database,

the {@link EntityNotFoundException} is thrown when the

instance state is first accessed.

(The persistence provider runtime is permitted but not

required to throw the {@code EntityNotFoundException} when

{@code getReference()} is called.)

<p>This operation allows the application to create an

association to an entity without loading its state from the

database.

<p>The application should not expect the instance state to

be available upon detachment, unless it was accessed by the

application while the entity manager was open.

@param entityClass entity class

@param primaryKey primary key

@return a reference to the entity instance

@throws I1legalArgumentException if the first argument does
not denote an entity type or the second argument is
not a valid type for that entity's primary key or
is null

@throws EntityNotFoundException if the entity state cannot
be accessed

T getReference(Class<T> entityClass, Object primaryKey);

Obtain a reference to an instance of the entity class of the
given object, with the same primary key as the given object,
whose state may be lazily fetched. The given object may be
persistent or detached, but may be neither new nor removed.
<p>If the requested instance does not exist in the database,
the {@link EntityNotFoundException} is thrown when the
instance state is first accessed.

(The persistence provider runtime is permitted but not
required to throw the {@code EntityNotFoundException} when
{@code getReference()} is called.)

<p>This operation allows the application to create an
association to an entity without loading its state from the
database.

<p>The application should not expect the instance state to

be available upon detachment, unless it was accessed by the
application while the entity manager was open.

@param entity a persistent or detached entity instance
@return a reference to the entity instance

* @throws IllegalArgumentException if the given object is not

* an entity, or if it is neither persistent nor detached
* @throws EntityNotFoundException if the entity state cannot be
* accessed

* @since 3.2

*/

<T> T getReference(T entity);

ECEE I

/**

* Synchronize changes held in the persistence context to the
* underlying database.

* @throws TransactionRequiredException if there is

* no transaction or if the entity manager has not been
* joined to the current transaction

* @throws PersistenceException if the flush fails

*/

void flush();

/**

* Set the {@linkplain FlushModeType flush mode} that applies to
* all objects contained in the persistence context.

* @param flushMode flush mode

*/

void setFlushMode(FlushModeType flushMode);

/**

* Get the {@linkplain FlushModeType flush mode} that applies to
* all objects contained in the persistence context.

* @return the current {@link FlushModeType}

*/

FlushModeType getFlushMode();

~
*
*

Lock an entity instance belonging to the persistence context,

obtaining the specified {@linkplain LockModeType lock mode}.

<p>If a pessimistic lock mode type is specified and the entity

contains a version attribute, the persistence provider must

also perform optimistic version checks when obtaining the

database lock. If these checks fail, the

{@link OptimisticLockException} is thrown.

<p>If the lock mode type is pessimistic and the entity instance

is found but cannot be locked:

the {@link PessimisticLockException} is thrown if the

database locking failure causes transaction-level rollback
the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback

@param entity a managed entity instance

@param lockMode 1lock mode

@throws I1legalArgumentException if the instance is not an
entity or is a detached entity

@throws TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction

@throws EntityNotFoundException if the entity does not exist
in the database when pessimistic locking is
performed

@throws OptimisticLockException if the optimistic version check

EE O T R T I R R R R .

375

376

* fails
* @throws PessimisticLockException if pessimistic locking fails

* and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking fails and
* only the statement is rolled back

* @throws PersistenceException if an unsupported lock call is made
*/
void lock(Object entity, LockModeType lockMode);

~
*
*

Lock an entity instance belonging to the persistence context,
obtaining the specified {@linkplain LockModeType lock mode},
using the specified properties.
<p>If a pessimistic lock mode type is specified and the entity
contains a version attribute, the persistence provider must
also perform optimistic version checks when obtaining the
database lock. If these checks fail, the
{@link OptimisticLockException} is thrown.
<p>If the lock mode type is pessimistic and the entity instance
is found but cannot be locked:

the {@link PessimisticLockException} is thrown if the
database locking failure causes transaction-level rollback
the {@link LockTimeoutException} ia thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific property or hint is not recognized,
it is silently ignored.
<p>Portable applications should not rely on the standard
timeout hint. Depending on the database in use and the locking
mechanisms used by the provider, the hint may or may not be
observed.
@param entity a managed entity instance
@param lockMode 1lock mode
@param properties standard and vendor-specific properties
and hints
@throws I1legalArgumentException if the instance is not an
entity or is a detached entity
@throws TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction
@throws EntityNotFoundException if the entity does not exist
in the database when pessimistic locking is performed
@throws OptimisticLockException if the optimistic version check
fails
@throws PessimisticlLockException if pessimistic locking fails
and the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back
@throws PersistenceException if an unsupported lock call is made
@since 2.0

L R I R R R I R U R T R R N I S TR R R

*/
void lock(Object entity, LockModeType lockMode,
Map<String, Object> properties);

/**

* Lock an entity instance belonging to the persistence context,
* obtaining the specified {@linkplain LockModeType lock mode},

* using the specified {@linkplain LockOption options}.

* <p>If a pessimistic lock mode type is specified and the entity
* contains a version attribute, the persistence provider must

* also perform optimistic version checks when obtaining the

* database lock. If these checks fail, the

* {@link OptimisticLockException} is thrown.

* <p>If the lock mode type is pessimistic and the entity instance
* is found but cannot be locked:

*

L R R S T R R S R S R R R R N

*/
Voi

/**

* %k X ¥ *

*
*
*
*
*
*
*
*
*/
voi

~
*
*

EE T R R T R R

the {@link PessimisticLockException} is thrown if the
database locking failure causes transaction-level rollback
the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback

<p>If a vendor-specific {@link LockOption} is not recognized,

it is silently ignored.

<p>Portable applications should not rely on the standard

{@linkplain Timeout timeout option}. Depending on the database

in use and the locking mechanisms used by the provider, the

option may or may not be observed.

@param entity a managed entity instance

@param lockMode 1lock mode

@param options standard and vendor-specific options

@throws I1legalArgumentException if the instance is not an
entity or is a detached entity

@throws TransactionRequiredException if there is no
transaction or if invoked on an entity manager which
has not been joined to the current transaction

@throws EntityNotFoundException if the entity does not exist
in the database when pessimistic locking is
performed

@throws OptimisticLockException if the optimistic version
check fails

@throws PessimisticlLockException if pessimistic locking fails
and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking fails and
only the statement is rolled back

@throws PersistenceException if an unsupported lock call is made

@since 3.2

d lock(Object entity, LockModeType lockMode,
LockOption... options);

Refresh the state of the given managed entity instance from
the database, overwriting unflushed changes made to the entity,
if any. This operation cascades to every entity related by an
association marked {@link CascadeType#REFRESH cascade=REFRESH}.
@param entity a managed entity instance
@throws I1legalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if there is no
transaction when invoked on a container-managed
entity manager of type
{@link PersistenceContextType#TRANSACTION}
@throws EntityNotFoundException if the entity no longer
exists in the database

d refresh(Object entity);

Refresh the state of the given managed entity instance from
the database, using the specified properties, and overwriting
unflushed changes made to the entity, if any. This operation
cascades to every entity related by an association marked
{@link CascadeType#REFRESH cascade=REFRESH}.
<p>If a vendor-specific property or hint is not recognized,
it is silently ignored.
@param entity a managed entity instance
@param properties standard and vendor-specific properties
and hints
@throws IllegalArgumentException if the instance is not
an entity or the entity is not managed
@throws TransactionRequiredException if there is no
transaction when invoked on a container-managed
entity manager of type

377

378

* {@link PersistenceContextType#TRANSACTION}
* @throws EntityNotFoundException if the entity no longer

* exists in the database
* @since 2.0
*/

void refresh(Object entity,

Map<String, Object> properties);

~
*
*

Refresh the state of the given managed entity instance from

the database, overwriting unflushed changes made to the entity,

if any, and obtain the given {@linkplain LockModeType lock mode}.

This operation cascades to every entity related by an association

marked {@link CascadeType#REFRESH cascade=REFRESH}.

<p>If the lock mode type is pessimistic and the entity instance

is found but cannot be locked:

the {@link PessimisticLockException} is thrown if the

database locking failure causes transaction-level rollback
the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback.

@param entity a managed entity instance

@param lockMode 1lock mode

@throws IllegalArgumentException if the instance is not an entity
or if the entity is not managed

@throws TransactionRequiredException if invoked on a
container-managed entity manager of type
{@link PersistenceContextType#TRANSACTION} when there is
no transaction; if invoked on an extended entity manager
when there is no transaction and a lock mode other than
{@link LockModeType#NONE} was specified; or if invoked
on an extended entity manager that has not been joined
to the current transaction and any lock mode other than
{@code NONE} was specified

@throws EntityNotFoundException if the entity no longer exists
in the database

@throws PessimisticLockException if pessimistic locking fails
and the transaction is rolled back

* @throws LockTimeoutException if pessimistic locking fails and

* only the statement is rolled back

* @throws PersistenceException if an unsupported lock call is made

* @since 2.0

*/

L R R I R R S R I R N T R N

void refresh(Object entity, LockModeType lockMode);

~
*
*

Refresh the state of the given managed entity instance from

the database, overwriting unflushed changes made to the entity,

if any, and obtain the given {@linkplain LockModeType lock mode},

using the specified properties. This operation cascades to every

entity related by an association marked {@link CascadeType#REFRESH

cascade=REFRESH}.

<p>If the lock mode type is pessimistic and the entity instance

is found but cannot be locked:

the {@link PessimisticLockException} is thrown if the
database locking failure causes transaction-level rollback

the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback.

<p>If a vendor-specific property or hint is not recognized,

it is silently ignored.

<p>Portable applications should not rely on the standard

timeout hint. Depending on the database in use and the locking

mechanisms used by the provider, the hint may or may not be

observed.

EE R T T R R I R R

* @param entity a managed entity instance
* @param lockMode 1lock mode
* @param properties standard and vendor-specific properties
* and hints
* @throws IllegalArgumentException if the instance is not an
* entity or if the entity is not managed
* @throws TransactionRequiredException if invoked on a
* container-managed entity manager of type
* {@link PersistenceContextType#TRANSACTION} when there is
* no transaction; if invoked on an extended entity manager
* when there is no transaction and a lock mode other than
* {@link LockModeType#NONE} was specified; or if invoked
* on an extended entity manager that has not been joined
* to the current transaction and any lock mode other than
* {@code NONE} was specified
* @throws EntityNotFoundException if the entity no longer exists
* in the database
* @throws PessimisticLockException if pessimistic locking fails
* and the transaction is rolled back
* @throws LockTimeoutException if pessimistic locking fails and
* only the statement is rolled back
* @throws PersistenceException if an unsupported lock call is made
* @since 2.0
*/
void refresh(Object entity, LockModeType lockMode,
Map<String, Object> properties);

~
*
*

Refresh the state of the given managed entity instance from the
database, using the specified {@linkplain RefreshOption options},
overwriting changes made to the entity, if any. If the supplied
options include a {@link LockModeType}, lock the given entity,
obtaining the given lock mode. This operation cascades to every
entity related by an association marked {@link CascadeType#REFRESH
cascade=REFRESH}.
<p>If the lock mode type is pessimistic and the entity instance is
found but cannot be locked:

the {@link PessimisticLockException} is thrown if the
database locking failure causes transaction-level rollback
the {@link LockTimeoutException} is thrown if the database
locking failure causes only statement-level rollback.

<p>If a vendor-specific {@link RefreshOption} is not recognized,
it is silently ignored.
<p>Portable applications should not rely on the standard
{@linkplain Timeout timeout option}. Depending on the database in
use and the locking mechanisms used by the provider, the hint may
or may not be observed.
@param entity a managed entity instance
@param options standard and vendor-specific options
@throws IllegalArgumentException if the instance is not an entity
or if the entity is not managed
@throws TransactionRequiredException if invoked on a
container-managed entity manager of type
{@link PersistenceContextType#TRANSACTION} when there is
no transaction; if invoked on an extended entity manager
when there is no transaction and a lock mode other than
{@link LockModeType#NONE} was specified; or if invoked
on an extended entity manager that has not been joined
to the current transaction and any lock mode other than
{@code NONE} was specified
@throws EntityNotFoundException if the entity no longer exists in
the database
@throws PessimisticLockException if pessimistic locking fails and
the transaction is rolled back
@throws LockTimeoutException if pessimistic locking fails and only

EE R N I I R I T R R T T T I R I I T

379

380

* the statement is rolled back
* @throws PersistenceException if an unsupported lock call is made
* @since 3.2
*/
void refresh(Object entity,
RefreshOption... options);

/**

* (lear the persistence context, causing all managed entities to
* become detached. Changes made to entities that have not already
* been flushed to the database will never be made persistent.

*/

void clear();

~
*
*

Evict the given managed or removed entity from the persistence
context, causing the entity to become immediately detached.
Unflushed changes made to the entity, if any, including deletion
of the entity, will never be synchronized to the database.
Managed entities which reference the given entity continue to
reference it. This operation cascades to every entity related by
an association marked {@link CascadeType#DETACH cascade=DETACH}.
If the given entity instance is new or detached, that is, if it
is not associated with this persistence context, it is ignored.
@param entity a managed or removed entity instance
@throws I1legalArgumentException if the instance is not an
entity
@since 2.0

L R B S R R

*/
void detach(Object entity);

/**

* Determine if the given object is a managed entity instance
* belonging to the current persistence context.

* @param entity entity instance

* @return boolean value indicating if entity belongs to the
* persistence context

* @throws IllegalArgumentException if not an entity

*/

boolean contains(Object entity);

/'k*

* Get the current {@linkplain LockModeType lock mode} held by

* this persistence context on the given managed entity instance.

* @param entity a managed entity instance

* @return the lock mode currently held

@throws TransactionRequiredException if there is no active
transaction or if the entity manager has not been
joined to the current transaction

@throws I1legalArgumentException if a transaction is active
but the given instance is not a managed entity

@since 2.0

*

* % ¥ F 3k

*/
LockModeType getLockMode(Object entity);

/**

* Set the default {@linkplain CacheRetrieveMode cache retrieval
* mode} for this persistence context.

* @param cacheRetrieveMode cache retrieval mode

* @since 3.2

*/

void setCacheRetrieveMode(CacheRetrieveMode cacheRetrieveMode);

/**
* Set the default {@linkplain CacheStoreMode cache storage mode}

* for this persistence context.
* @param cacheStoreMode cache storage mode

* @since 3.2
*/
void setCacheStoreMode(CacheStoreMode cacheStoreMode);

/**

* The cache retrieval mode for this persistence context.
* @since 3.2

*/

CacheRetrieveMode getCacheRetrieveMode();

/**

* The cache storage mode for this persistence context.
* @since 3.2

*/

CacheStoreMode getCacheStoreMode();

/**

* Set an entity manager property or hint.

* If a vendor-specific property or hint is not recognized, it is
* silently ignored.

* @param propertyName name of the property or hint

* @param value value for the property or hint

* @throws IllegalArgumentException if the property or hint name
* is recognized by the implementation, but the second

* argument is not valid value

*

@since 2.0
*/
void setProperty(String propertyName, Object value);

/**

* The properties and hints and their associated values which are
* in effect for this entity manager. Modifying the contents of

* the returned map does not change the configuration in effect.
* @return a map of properties and hints currently in effect

* @since 2.0

*/
Map<String, Object> getProperties();

* Create an instance of {@link Query} for executing a

* Jakarta Persistence query language statement.

* @param qlString a Jakarta Persistence query string

* @return the new query instance

* @throws IllegalArgumentException if the query string is
* found to be invalid

Query createQuery(String qlString);

/**

* Create an instance of {@link TypedQuery} for executing a

* criteria query.

* @param criteriaQuery a criteria query object

* @return the new query instance

* @throws IllegalArgumentException if the criteria query is
* found to be invalid

* @since 2.0

*/
<T> TypedQuery<T> createQuery(CriteriaQuery<T> criteriaQuery);

/**

* Create an instance of {@link TypedQuery} for executing a
* criteria query, which may be a union or intersection of

* top-level queries.

* @param selectQuery a criteria query object

* @return the new query instance

* @throws IllegalArgumentException if the criteria query is
* found to be invalid

381

382

* @since 3.2
*/
<T> TypedQuery<T> createQuery(CriteriaSelect<T> selectQuery);

/**

* Create an instance of {@link Query} for executing a criteria
* update query.

* @param updateQuery a criteria update query object

* @return the new query instance

* @throws IllegalArgumentException if the update query is

* found to be invalid

* @since 2.1

*/

Query createQuery(Criterialpdate<?> updateQuery);

/**

* Create an instance of {@link Query} for executing a criteria

delete query.

@param deleteQuery a criteria delete query object

@return the new query instance

@throws IllegalArgumentException if the delete query is
found to be invalid

@since 2.1

* 0% kX F X

*/
Query createQuery(CriteriaDelete<?> deleteQuery);

~
*
*

Create an instance of {@link TypedQuery} for executing a

Jakarta Persistence query language statement.

The select list of the query must contain only a single

item, which must be assignable to the type specified by

the {@code resultClass} argument.

@param qlString a Jakarta Persistence query string

@param resultClass the type of the query result

@return the new query instance

@throws I1llegalArgumentException if the query string is
found to be invalid or if the query result is
found to not be assignable to the specified type

@since 2.0

L R N R R I

*/
<T> TypedQuery<T> createQuery(String qlString, Class<T> resultClass);

/**

* Create an instance of {@link Query} for executing a named
query written in the Jakarta Persistence query language or
in native SQL.

@param name the name of a query defined in metadata

@return the new query instance

@throws I1legalArgumentException if a query has not been
defined with the given name or if the query string is
found to be invalid

@see NamedQuery

* @see NamedNativeQuery

*/

Query createNamedQuery(String name);

* % ¥k ok % X X

~
*
*

Create an instance of {@link TypedQuery} for executing a
Jakarta Persistence query language named query.

The select list of the query must contain only a single

item, which must be assignable to the type specified by

the {@code resultClass} argument.

@param name the name of a query defined in metadata

@param resultClass the type of the query result

@return the new query instance

* @throws IllegalArgumentException if a query has not been

* defined with the given name or if the query string is

ECE I

* found to be invalid or if the query result is found to

* not be assignable to the specified type
* @since 2.0
*/

<T> TypedQuery<T> createNamedQuery(String name, Class<T> result(lass);

/**

* Create an instance of {@link TypedQuery} for executing a
named query written in the Jakarta Persistence query
language or in native SQL.

@param reference a reference to the query defined in metadata

@return the new query instance

@throws I1legalArgumentException if a query has not been
defined, or if the query string is found to be
invalid, or if the query result is found to not be
assignable to the specified type

@see EntityManagerFactory#getNamedQueries(Class)

@see NamedQuery

* @see NamedNativeQuery

*/
<T> TypedQuery<T> createQuery(TypedQueryReference<T> reference);

L D R T R

~
*
*

Create an instance of {@link Query} for executing a native
SQL statement, e.g., for update or delete.

<p>If the query is not an update or delete query, query
execution will result in each row of the SQL result being
returned as a result of type {@code Object[]} (or a result
of type {@code Object} if there is only one column in the
select list.) Column values are returned in the order of
their occurrence in the select list and default JDBC type
mappings are applied.

@param sqlString a native SQL query string

@return the new query instance

L R R T R R

*/
Query createNativeQuery(String sqlString);

/**

* Create an instance of {@link Query} for executing a native

* SQL query.

*

* <p>In the next release of this API, the return type of this
* method will change to {@code TypedQuery<T>}.

* @param sqlString a native SQL query string

*

@param resultClass the type of the query result

* @return the new query instance

*/

<T> Query createNativeQuery(String sqlString, Class<T> resultClass);

/**

* Create an instance of {@link Query} for executing

* 3 native SQL query.

* @param sqlString a native SQL query string

* @param resultSetMapping the name of the result set mapping

* @return the new query instance

*/
Query createNativeQuery(String sqlString, String resultSetMapping);

/**

* Create an instance of {@link StoredProcedureQuery} for executing
* 3 stored procedure in the database.

* <p>Parameters must be registered before the stored procedure can
* be executed.

* <p>If the stored procedure returns one or more result sets, any
* result set is returned as a list of type {@code Object[]}.

*

@param name name assigned to the stored procedure query in

383

* metadata

* @return the new stored procedure query instance

* @throws IllegalArgumentException if no query has been defined

* with the given name

* @since 2.1

*/

StoredProcedureQuery createNamedStoredProcedureQuery(String name);
/**

* Create an instance of {@link StoredProcedureQuery} for executing a
* stored procedure in the database.

* <p>Parameters must be registered before the stored procedure can
* be executed.

* <p>If the stored procedure returns one or more result sets, any
* result set is returned as a list of type {@code Object[]}.

* @param procedureName name of the stored procedure in the database
* @return the new stored procedure query instance

* @throws IllegalArgumentException if a stored procedure of the

* given name does not exist (or if query execution will

* fail)

* @since 2.1

*/
StoredProcedureQuery createStoredProcedureQuery(String procedureName);

/'k*

* (Create an instance of {@link StoredProcedureQuery} for executing
* 3 stored procedure in the database.

* <p>Parameters must be registered before the stored procedure can
* be executed.

* <p>The {@code resultClass} arguments must be specified in the

* order in which the result sets is returned by the stored procedure
* invocation.

* @param procedureName name of the stored procedure in the database
* @param resultClasses classes to which the result sets

* produced by the stored procedure are to be mapped

* @return the new stored procedure query instance

* @throws IllegalArgumentException if a stored procedure of the

* given name does not exist (or if query execution will

* fail)

* @since 2.1

*/
StoredProcedureQuery createStoredProcedureQuery(
String procedureName, Class<?>... resultClasses);

/**

* Create an instance of {@link StoredProcedureQuery} for executing
* a stored procedure in the database.

* <p>Parameters must be registered before the stored procedure can
* be executed.

* <p>The {@code resultSetMapping} arguments must be specified in

* the order in which the result sets is returned by the stored

* procedure invocation.

* @param procedureName name of the stored procedure in the

* database

* @param resultSetMappings the names of the result set mappings

* to be used in mapping result sets

* returned by the stored procedure

* @return the new stored procedure query instance

* @throws IllegalArgumentException if a stored procedure or

* result set mapping of the given name does not exist

*

(or the query execution will fail)

*/

StoredProcedureQuery createStoredProcedureQuery(

String procedureName, String... resultSetMappings);

/**

* Indicate to the entity manager that a JTA transaction is

384

active and join the persistence context to it.

<p>This method should be called on a JTA application
managed entity manager that was created outside the scope
of the active transaction or on an entity manager of type
{@link SynchronizationType#UNSYNCHRONIZED} to associate

it with the current JTA transaction.

* @throws TransactionRequiredException if there is no active
* transaction

*/

void joinTransaction();

* 0% kX F X

* Determine whether the entity manager is joined to the

* current transaction. Returns false if the entity manager
* is not joined to the current transaction or if no

* transaction is active.

* @return boolean

* @since 2.1

*/

boolean isJoinedToTransaction();

~
*
*

Return an object of the specified type to allow access to
a provider-specific API. If the provider implementation
of {@code EntityManager} does not support the given type,
the {@link PersistenceException} is thrown.
@param cls the class of the object to be returned.
This is usually either the underlying class
implementing {@code EntityManager} or an
interface it implements.
@return an instance of the specified class
@throws PersistenceException if the provider does not
support the given type
@since 2.0

* % X ¥ ok k% X X F ok *

*/
<T> T unwrap(Class<T> cls);

/**

* Return the underlying provider object for the

* {olink EntityManager}, if available. The result of this
method is implementation-specific.

<p>The {@code unwrap} method is to be preferred for new
applications.

@return the underlying provider object

* % kX

*
/
Object getDelegate();

~
*
*

Close an application-managed entity manager.

<p>After invocation of {@code close()}, every method of

the {@code EntityManager} instance and of any instance

of {@link Query}, {@link TypedQuery}, or

{@link StoredProcedureQuery} obtained from it throws

the {@link IllegalStateException}, except for

{@link #getProperties()}, {@link #getTransaction()},

and {@link #isOpen()} (which returns false).

<p>If this method is called when the entity manager is

joined to an active transaction, the persistence context

remains managed until the transaction completes.

@throws I1legalStateException if the entity manager is
container-managed

L I I R S T R

*/
void close();
/**

* Determine whether the entity manager is open.
* @return true until the entity manager has been closed

385

386

*/
boolean isOpen();

* Return the resource-level {@link EntityTransaction} object.
* The {@code EntityTransaction} instance may be used serially
* to begin and commit multiple transactions.

* @return EntityTransaction instance

* @throws IllegalStateException if invoked on a JTA entity

* manager

EntityTransaction getTransaction();

/**
* The {@linkplain EntityManagerFactory entity manager factory}
which created this entity manager.
@return the {@link EntityManagerFactory}
@throws I1legalStateException if the entity manager has
been closed
@since 2.0

* % ¥ * *

*/
EntityManagerFactory getEntityManagerFactory();

/**

* Obtain an instance of {@link CriteriaBuilder} which may be
* ysed to construct {@link CriteriaQuery} objects.

* @return an instance of {@link CriteriaBuilder}

* @throws IllegalStateException if the entity manager has

* been closed

* @see EntityManagerFactoryfigetCriteriaBuilder()

* @since 2.0

*/

CriteriaBuilder getCriteriaBuilder();

* Obtain an instance of the {@link Metamodel} interface which
* provides access to metamodel objects describing the managed
* types belonging to the persistence unit.

* @return an instance of {@link Metamodel}

* @throws IllegalStateException if the entity manager has

* been closed

* @since 2.0

*/

Metamodel getMetamodel();

/**

* Create a new mutable {@link EntityGraph}, allowing dynamic
* definition of an entity graph.

* @param rootType class of entity graph

* @return entity graph

* @since 2.1

*/

<T> EntityGraph<T> createEntityGraph(Class<T> rootType);

* Obtain a mutable copy of a named {@link EntityGraph}, or
* return null if there is no entity graph with the given

* name.

* @param graphName name of an entity graph

* @return entity graph

* @since 2.1

*/

EntityGraph<?> createEntityGraph(String graphName);

/**

* Obtain a named {@link EntityGraph}. The returned instance
* of {@code EntityGraph} should be considered immutable.

*
*
*
*
*

*/

@param graphName name of an existing entity graph

@return named entity graph

@throws I1legalArgumentException if there is no entity
of graph with the given name

@since 2.1

EntityGraph<?> getEntityGraph(String graphName);

/**

*

E

*

*/

Return all named {@link EntityGraph}s that are defined for

the given entity class type.

@param entityClass entity class

@return list of all entity graphs defined for the entity
@throws I1legalArgumentException if the class is not an entity
@since 2.1

<T> List<EntityGraph<? super T>> getEntityGraphs(Class<T> entityClass);

~
*
*

L R R S R R R

Execute the given action using the database connection underlying this

{@code EntityManager}. Usually, the connection is a JDBC connection, but a

provider might support some other native connection type, and is not required

to support {@code java.sql.Connection}. If this {@code EntityManager} is

associated with a transaction, the action is executed in the context of the

transaction. The given action should close any resources it creates, but should

not close the connection itself, nor commit or roll back the transaction. If

the given action throws an exception, the persistence provider must mark the

transaction for rollback.

@param action the action

@param <C> the connection type, usually {@code java.sql.Connection}

@throws PersistenceException wrapping the checked {@link Exception} thrown by
{@link ConnectionConsumer#faccept}, if any

@since 3.2

*/
<C> void runWithConnection(ConnectionConsumer<C> action);

~
*
*

L I R I T T R R

*

*

*

Call the given function and return its result using the database connection

underlying this {@code EntityManager}. Usually, the connection is a JDBC

connection, but a provider might support some other native connection type,

and is not required to support {@code java.sql.Connection}. If this

{@code EntityManager} is associated with a transaction, the function is

executed in the context of the transaction. The given function should close

any resources it creates, but should not close the connection itself, nor

commit or roll back the transaction. If the given action throws an exception,

the persistence provider must mark the transaction for rollback.

@param function the function

@param <C> the connection type, usually {@code java.sql.Connection}

@param <T> the type of result returned by the function

@return the value returned by {@link ConnectionFunction#apply}.

@throws PersistenceException wrapping the checked {@link Exception} thrown by
{@link ConnectionFunction#apply}, if any

@since 3.2

*/

<C

,T> T callWithConnection(ConnectionFunction<C, T> function);

B.2. EntityTransaction

package jakarta.persistence;

/**

* Interface used to control transactions on resource-local entity
* managers. The {@link EntityManager#fgetTransaction} method returns

387

388

* the {@code EntityTransaction} interface.
*

* @since 1.0

*/

public interface EntityTransaction {

/**

* Start a resource transaction.

* @throws IllegalStateException if {@link #isActive()} is true
*/

void begin();

/**

* Commit the current resource transaction, writing any unflushed
* changes to the database.

* @throws IllegalStateException if {@link #isActive()} is false
* @throws RollbackException if the commit fails

*/

void commit();

/**

* Roll back the current resource transaction.

* @throws IllegalStateException if {@link #isActive()} is false
* @throws PersistenceException if an unexpected error

* condition is encountered

*/

void rollback();

/‘k‘k

* Mark the current resource transaction so that the only possible
* outcome of the transaction is for the transaction

* to be rolled back.

* @throws IllegalStateException if {@link #isActive()} is false
*/

void setRollbackOnly();

/**

* Determine whether the current resource transaction has been

* marked for rollback.

* @return boolean indicating whether the transaction has been

* marked for rollback

* @throws IllegalStateException if {@link #isActive()} is false
*/

boolean getRollbackOnly();

/**

* Indicate whether a resource transaction is in progress.

* @return boolean indicating whether transaction is in progress
* @throws PersistenceException if an unexpected error

* condition is encountered

*/

boolean isActive();

/**

* Set the transaction timeout, in seconds. This is a hint.

* @param timeout the timeout, in seconds, or null to indicate

* that the database server should set the timeout
* @since 3.2

*/

void setTimeout(Integer timeout);

/**

* The transaction timeout.
* @since 3.2

*/

Integer getTimeout();

B.3. EntityManagerFactory

package jakarta.persistence;

import java.util.Map;
import java.util.function.Consumer;
import java.util.function.Function;

import jakarta.persistence.metamodel.Metamodel;
import jakarta.persistence.criteria.CriteriaBuilder;

/**

Interface used to interact with the persistence unit, and to
create new instances of {@link EntityManager}.

<p>A persistence unit defines the set of all classes that are
related or grouped by the application, and which must be
colocated in their mapping to a single database. If two entity
types participate in an association, then they must belong to
the same persistence unit.

<p>A persistence unit may be defined by a {@code persistence.xml}
file, or it may be defined at runtime via the
{@link PersistenceConfiguration} API.

<p>Every persistence unit has a transaction type,

either {@link PersistenceUnitTransactionType#JTA JTA}, or

{@link PersistenceUnitTransactionType#RESOURCE_LOCAL RESOURCE_LOCAL}.
Resource-local transactions are managed programmatically via the
{@link EntityTransaction} interface.

<p>An {@link EntityManagerFactory} with a lifecycle managed by

the application may be created using the static operations of

the {@link Persistence} class:

if the persistence unit is defined in {@code persistence.xml},
an entity manager factory may be created by calling
{@link Persistence#icreateEntityManagerFactory(String)} or
{@link Persistencef#icreateEntityManagerFactory(String,Map)},
or

if the persistence unit was defined using
{@link PersistenceConfiguration}, an entity manager factory
may be created by calling

<p>Usually, there is exactly one {@code EntityManagerFactory} for

each persistence unit:

{@snippet :

// create a factory at initialization time

static final EntityManagerFactory entityManagerFactory =
Persistence.createEntityManagerFactory("orderMgt");

}

<p>Alternatively, in the Jakarta EE environment, a
container-managed {@code EntityManagerFactory} may be obtained
by dependency injection, using {@link PersistenceUnit}.
{@snippet :

// inject the container-managed factory
@PersistenceUnit(unitName="orderMgt")

EntityManagerFactory entityManagerFactory;

}

L I B T R R I R R R R T R R R R D R R R R R R R R T R T R R R

{@link PersistenceficreateEntityManagerFactory(PersistenceConfiguration)}.

389

390

<p>An application-managed {@code EntityManager} may be created
via a call to {@link #createEntityManager()}. However, this
approach places complete responsibility for cleanup and exception
management on the client, and is thus considered error-prone. It
is much safer to use the methods {@link #runInTransaction} and
{@link #callInTransaction} to obtain {@code EntityManager}s.
Alternatively, in the Jakarta EE environment, a container-managed
{@link EntityManager} may be obtained by dependency injection,
using {@link PersistenceContext}, and the application need not
interact with the {@code EntityManagerFactory} directly.

*

*

*

*

*

*

*

*

*

*

*

* <p>The {@code EntityManagerFactory} provides access to certain
* other useful APIs:

*

* an instance of {@link Metamodel} exposing a model of the

* managed types associated with the persistence unit may be

* obtained by calling {@link #getMetamodel()},

* an instance of {@link SchemaManager}, allowing programmatic
* control over schema generation and validation, may be

* obtained by calling {@link #getSchemaManager()},

* an instance of {@link Cache}, allowing direct programmatic
* control over the second-level cache, may be obtained by

* calling {@link #getCache()},

* the {@link CriteriaBuilder}, used to define criteria queries,
* may be obtained by calling {@link #getCriteriaBuilder()},

* and

* <1li>the {@link PersistenceUnitUtil} may be obtained by calling
* {@link #getPersistenceUnitUtil()}.

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

<p>When the application has finished using the entity manager

factory, or when the application terminates, the application

should {@linkplain #close} the entity manager factory. If

necessary, a {@link java.lang.ref.Cleaner} may be used:

{@snippet :

// factory should be destroyed before program terminates
Cleaner.create().register(entityManagerFactory, entityManagerFactory::close);
}

Once an {@code EntityManagerFactory} has been closed, all its

entity managers are considered to be in the closed state.

@see EntityManager
@since 1.0

*/
public interface EntityManagerFactory extends AutoCloseable {

~
*
*

Create a new application-managed {@link EntityManager}. This
method returns a new {@code EntityManager} instance each time
it is invoked.

<p>The {@link EntityManager#isOpen} method will return true
on the returned instance.

@return entity manager instance

@throws I1legalStateException if the entity manager factory
has been closed

EE R T

*/
EntityManager createEntityManager();

/**

Create a new application-managed {@link EntityManager} with
the given {@link Map} specifying property settings. This
method returns a new {@code EntityManager} instance each time
it is invoked.

<p>The {@link EntityManager#isOpen} method will return true
on the returned instance.

@param map properties for entity manager

E O R T

* @return entity manager instance

* @throws IllegalStateException if the entity manager factory
* has been closed

*/

EntityManager createEntityManager(Map<?, 7> map);

/**

* Create a new JTA application-managed {@link EntityManager} with
the specified synchronization type. This method returns a new
{@code EntityManager} instance each time it is invoked.
<p>The {@link EntityManager#isOpen} method will return true on
the returned instance.

@param synchronizationType how and when the entity manager should
be synchronized with the current JTA
transaction

@return entity manager instance

@throws IllegalStateException if the entity manager factory has

been configured for resource-local entity managers or is closed

L R N R R N I

@since 2.1
*/
EntityManager createEntityManager(SynchronizationType synchronizationType);

~
*
*

Create a new JTA application-managed {@link EntityManager} with
the specified synchronization type and map of properties. This
method returns a new {@code EntityManager} instance each time it
is invoked.

<p>The {@link EntityManager#isOpen} method will return true on the

returned instance.

@param synchronizationType how and when the entity manager should
be synchronized with the current JTA
transaction

@param map properties for entity manager

@return entity manager instance

@throws IllegalStateException if the entity manager factory has

been configured for resource-local entity managers or is closed

L I T T R N

@since 2.1
*/
EntityManager createEntityManager(SynchronizationType synchronizationType, Map<?, 7> map);

/**

* Return an instance of {@link CriteriaBuilder} which may be used
* to construct {@link jakarta.persistence.criteria.CriteriaQuery}
* objects.

* @return an instance of {@link CriteriaBuilder}

* @throws IllegalStateException if the entity manager factory has
* been closed
*
*
*
*

@see EntityManager#igetCriteriaBuilder()

@since 2.0
*/
CriteriaBuilder getCriteriaBuilder();

/**

Return an instance of the {@link Metamodel} interface for access
to the metamodel of the persistence unit.

@return an instance of {@link Metamodel}

@throws IllegalStateException if the entity manager factory

has been closed

* % ¥ ¥ ok 3k 0k

@since 2.0
*/
Metamodel getMetamodel();

391

/**

* Indicates whether the factory is open. Returns true until the
* factory has been closed.

* @return boolean indicating whether the factory is open

*/

boolean isOpen();

/**

* (Close the factory, releasing any resources that it holds.

* After a factory instance has been closed, all methods invoked
on it will throw the {@link I1legalStateException}, except
for {@link #isOpen}, which will return false. Once an

{@code EntityManagerFactory} has been closed, all its

* entity managers are considered to be in the closed state.

* @throws IllegalStateException if the entity manager factory

* has been closed

*/

void close();

* % X

/**

* The name of the persistence unit.
*

* @since 3.2
*/
String getName();

/**

* Get the properties and associated values that are in effect
* for the entity manager factory. Changing the contents of the
* map does not change the configuration in effect.

* @return properties

* @throws IllegalStateException if the entity manager factory
* has been closed

*

*

@since 2.0
*/
Map<String, Object> getProperties();

/**

* Access the cache that is associated with the entity manager

* factory (the "second level cache").

* @return an instance of {@link Cache}, or null if there is no
* second-level cache in use

* @throws IllegalStateException if the entity manager factory

* has been closed

*

*

@since 2.0
*/
Cache getCache();

/**

* Return interface providing access to utility methods for the
* persistence unit.

@return an instance of {@link PersistenceUnitUtil}

@throws I1legalStateException if the entity manager factory
has been closed

* % ¥ * *

@since 2.0
*/
PersistenceUnitUtil getPersistenceUnitUtil();

/**

* The type of transaction management used by this persistence
* unit, either resource-local transaction management, or JTA.
*

* @since 3.2

*/

392

PersistenceUnitTransactionType getTransactionType();

/**

* Return interface providing access to schema management
* operations for the persistence unit.

* @return an instance of {@link SchemaManager}

* @throws IllegalStateException if the entity manager factory
* has been closed

*

* @since 3.2
*/
SchemaManager getSchemaManager();

~
*
*

Define the query, typed query, or stored procedure query as

a named query such that future query objects can be created

from it using the {@link EntityManager#createNamedQuery} or
{@link EntityManager#createNamedStoredProcedureQuery} methods.
<p>Any configuration of the query object (except for actual
parameter binding) in effect when the named query is added

is retained as part of the named query definition. This

includes configuration information such as max results, hints,
flush mode, lock mode, result set mapping information, and
information about stored procedure parameters.

<p>When the query is executed, information that can be set by
means of the query APIs can be overridden. Information that is
overridden does not affect the named query as registered with
the entity manager factory, and thus does not affect subsequent
query objects created from it by calling {@code createNamedQuery}
or {@code createNamedStoredProcedureQuery}.

<p>If a named query of the same name has been previously defined,
either statically via metadata or via this method, that query
definition is replaced.

@param name name for the query
@param query a {@link Query}, {@link TypedQuery},
or {@link StoredProcedureQuery}

L N N R R T R T T R

@since 2.1
*/
void addNamedQuery(String name, Query query);

/**

* Return an object of the specified type to allow access to
a provider-specific API. If the provider implementation of
{@code EntityManagerFactory} does not support the given
type, the {@link PersistenceException} is thrown.
@param cls the class of the object to be returned.
This is usually either the underlying class
implementing {@code EntityManagerFactory} or an
interface it implements.
@return an instance of the specified class
@throws PersistenceException if the provider does not support
the given type
@since 2.1

L R N R T

*/
<T> T unwrap(Class<T> cls);

/**

* Add a named copy of the given {@link EntityGraph} to this

* {@code EntityManagerFactory}. If an entity graph with the

* given name already exists, it is replaced.

* @param graphName name for the entity graph

* @param entityGraph entity graph

* @since 2.1

*/

<T> void addNamedEntityGraph(String graphName, EntityGraph<T> entityGraph);

393

394

/**

* A map keyed by {@linkplain NamedQuery#name query name}, containing

* {@linkplain TypedQueryReference references} to every named query whose
* result type is assignable to the given Java type.

* @param resultType any Java type, including {@code Object.class}
* meaning all queries

* @return a map keyed by query name

* @param <R> the specified upper bound on the query result types

*

*

@since 3.2
*/

<R> Map<String, TypedQueryReference<R>> getNamedQueries(Class<R> resultType);

/**

* A map keyed by {@linkplain NamedEntityGraph#name graph name}, containing
* every named {@linkplain EntityGraph entity graph} whose entity type is

* assignable to the given Java type.

* @param entityType any Java type, including {@code Object.class}

* meaning all entity graphs

* @return a map keyed by graph name

* @param <E> the specified upper bound on the entity graph types

*

* @since 3.2

*/

<E> Map<String, EntityGraph<? extends E>> getNamedEntityGraphs(Class<E> entityType);

~
*
*

Create a new application-managed {@link EntityManager} with an active
transaction, and execute the given function, passing the {@code EntityManager}
to the function.

<p>

If the transaction type of the persistence unit is JTA, and there is a JTA
transaction already associated with the caller, then the {@code EntityManager}
is associated with this current transaction. If the given function throws an
exception, the JTA transaction is marked for rollback, and the exception is
rethrown.

<p>

Otherwise, if the transaction type of the persistence unit is resource-local,
or if there is no JTA transaction already associated with the caller, then

the {@code EntityManager} is associated with a new transaction. If the given
function returns without throwing an exception, this transaction is committed.
If the function does throw an exception, the transaction is rolled back, and
the exception is rethrown.

<p>

Finally, the {@code EntityManager} is closed before this method returns
control to the client.

@param work a function to be executed in the scope of the transaction

L R D T R I I R R R T

@since 3.2
*/
void runInTransaction(Consumer<EntityManager> work);
/**
* Create a new application-managed {@link EntityManager} with an active
* transaction, and call the given function, passing the {@code EntityManager}
* to the function.
* <p>
* If the transaction type of the persistence unit is JTA, and there is a JTA
* transaction already associated with the caller, then the {@code EntityManager}
* is associated with this current transaction. If the given function returns
* without throwing an exception, the result of the function is returned. If the
* given function throws an exception, the JTA transaction is marked for rollback,
* and the exception is rethrown.
* <p>
* QOtherwise, if the transaction type of the persistence unit is resource-local,
*

or if there is no JTA transaction already associated with the caller, then

* the {@code EntityManager} is associated with a new transaction. If the given
* function returns without throwing an exception, this transaction is committed
* and the result of the function is returned. If the function does throw an

* exception, the transaction is rolled back, and the exception is rethrown.

* <p>

* Finally, the {@code EntityManager} is closed before this method returns

* control to the client.

*

* @param work a function to be called in the scope of the transaction
* @return the value returned by the given function

*

* @since 3.2

*/

<R> R calllnTransaction(Function<EntityManager, R> work);

B.4. LockModeType

/**

L B TR R R B R R R T R R R D R R R R R R R N R T R R I

Enumerates the kinds of optimistic or pessimistic lock which
may be obtained on an entity instance.

<p> A specific lock mode may be requested by passing an explicit
{@code LockModeType} as an argument to:

one of the methods of {@link EntityManager} which obtains
locks ({@link EntityManager#lock lock()},
{@link EntityManager#find find()}, or
{@link EntityManager#refresh refresh()}), or
to {@link Query#setLockMode(LockModeType)} or
{@link TypedQuery#setLockMode(LockModeType)}.

<p> Optimistic locks are specified using

{@link LockModeType#OPTIMISTIC LockModeType.OPTIMISTIC} and

{@link LockModeType#OPTIMISTIC_FORCE_INCREMENT}. The lock mode

types {@link LockModeType#READ} and {@link LockModeType#WRITE} are
synonyms for {@code OPTIMISTIC} and {@code OPTIMISTIC_FORCE_INCREMENT}
respectively. The latter are preferred for new applications.

<p> The semantics of requesting locks of type

{@code LockModeType.OPTIMISTIC} and

{@code LockModeType.OPTIMISTIC_FORCE_INCREMENT} are the
following.

<p> If transaction T1 calls for a lock of type
{@code LockModeType.OPTIMISTIC} on a versioned object,
the entity manager must ensure that neither of the following
phenomena can occur:

 P1 (Dirty read): Transaction T1 modifies a row.
Another transaction T2 then reads that row and obtains the
modified value, before T1 has committed or rolled back.
Transaction T2 eventually commits successfully; it does not
matter whether T1 commits or rolls back and whether it does
so before or after T2 commits.

</1i>

<1i> P2 (Non-repeatable read): Transaction T1 reads a row.
Another transaction T2 then modifies or deletes that row,
before T1 has committed. Both transactions eventually commit
successfully.

</1i>

<p> Lock modes must always prevent the phenomena P1 and P2.

395

<p> In addition, obtaining a lock of type

{@code LockModeType.OPTIMISTIC_FORCE_INCREMENT} on a versioned
object, will also force an update (increment) to the entity's
version column.

<p> The persistence implementation is not required to support
the use of optimistic lock modes on non-versioned objects. When
it cannot support such a lock request, it must throw the {@link
PersistenceException}.

<p>The lock modes {@link LockModeType#PESSIMISTIC_READ},
{@link LockModeType#PESSIMISTIC_WRITE}, and

{@link LockModeType#PESSIMISTIC_FORCE_INCREMENT} are used to
immediately obtain long-term database locks.

<p> The semantics of requesting locks of type

{@code LockModeType.PESSIMISTIC_READ},

{@code LockModeType.PESSIMISTIC_WRITE}, and

{@code LockModeType.PESSIMISTIC_FORCE_INCREMENT} are the
following.

<p> If transaction T1 calls for a lock of type

{@code LockModeType.PESSIMISTIC_READ} or

{@code LockModeType.PESSIMISTIC_WRITE} on an object, the entity
manager must ensure that neither of the following phenomena can
occur:

 P1 (Dirty read): Transaction T1 modifies a

row. Another transaction T2 then reads that row and obtains the
modified value, before T1 has committed or rolled back.

 P2 (Non-repeatable read): Transaction T1 reads a row.
Another transaction T2 then modifies or deletes that row, before
T1 has committed or rolled back.

<p> A lock with {@code LockModeType.PESSIMISTIC_WRITE} can be
obtained on an entity instance to force serialization among
transactions attempting to update the entity data. A lock with
{@code LockModeType.PESSIMISTIC_READ} can be used to query data
using repeatable-read semantics without the need to reread the
data at the end of the transaction to obtain a lock, and without
blocking other transactions reading the data. A lock with

{@code LockModeType.PESSIMISTIC_WRITE} can be used when querying
data and there is a high likelihood of deadlock or update failure
among concurrent updating transactions.

<p> The persistence implementation must support the use of locks
of type {@code LockModeType.PESSIMISTIC_READ} and

{@code LockModeType.PESSIMISTIC_WRITE} with non-versioned entities
as well as with versioned entities.

<p> When the lock cannot be obtained, and the database locking
failure results in transaction-level rollback, the provider must
throw the {@link PessimisticLockException} and ensure that the
JTA transaction or {@code EntityTransaction} has been marked for
rollback.

<p> When the lock cannot be obtained, and the database locking
failure results in only statement-level rollback, the provider
must throw the {@link LockTimeoutException} (and must not mark
the transaction for rollback).

@since 1.0

L T R R N R R R T N R N RN T N R R R TR A R R T N N R R R T R R R T G T T I R

*
~

396

public enum LockModeType implements FindOption, RefreshOption {
/**
* Synonymous with {@link #OPTIMISTIC}.
* <p>
* {@code OPTIMISTIC} is preferred for new applications.
*
*/
READ,

/'k*

* Synonymous with {@link #OPTIMISTIC_FORCE_INCREMENT}.
* <p>

* {@code OPTIMISTIC_FORCE_INCREMENT} is preferred for

* new applications.
*

*/
WRITE,

/**
* Optimistic lock.
*
* @since 2.0
*/
OPTIMISTIC,

/**

* Optimistic lock, with version update.
*

* @since 2.0

*/
OPTIMISTIC_FORCE_INCREMENT,

/‘k*

*

* Pessimistic read lock.
*

* @since 2.0

*/

PESSIMISTIC_READ,

/**

* Pessimistic write lock.
*

* @since 2.0

*/

PESSIMISTIC_WRITE,

/**

* Pessimistic write lock, with version update.
*

* @since 2.0

*/

PESSIMISTIC_FORCE_INCREMENT,

/**

* No lock.

*

* @since 2.0
*/
NONE

397

B.5. Cache

/**
*
*
*
*
*
*

*/
pub

Interface used to interact with the second-level cache.
If no second-level cache is in use, the methods of this
interface have no effect, except for {@link #contains},
which returns false.

@since 2.0

lic interface Cache {

/**

* Whether the cache contains data for the given entity.

* @param cls entity class

* @param primaryKey primary key

* @return boolean indicating whether the entity is in the cache
*/

boolean contains(Class<?> cls, Object primaryKey);

/'k*

* Remove the data for the given entity from the cache.
* @param cls entity class

* @param primaryKey primary key

*/

void evict(Class<?> cls, Object primaryKey);

/**

* Remove the data for entities of the specified class
* (and its subclasses) from the cache.

* @param cls entity class

*/

void evict(Class<?> cls);

/**

* (lear the cache.
*/

void evictAl1l();

/**
* Return an object of the specified type to allow access to
* the provider-specific API. If the provider's implementation
* of the {@code Cache} interface does not support the specified
* class, the {@link PersistenceException} is thrown.
* @param cls the class of the object to be returned.
* This is usually either the underlying class
* implementing {@code Cache}, or an interface it
* implements.
* @return an instance of the specified type
* @throws PersistenceException if the provider does not support
* the given type
* @since 2.1
*/
<T> T unwrap(Class<T> cls);
}
B.6. Query
package jakarta.persistence;
import java.util.Calendar;
import java.util.Date;
import java.util.List;
import java.util.Set;

398

import java.util.Map;
import java.util.stream.Stream;

/**

Interface used to control query execution.

@see TypedQuery

@see Parameter

@sin
*/

ce 1.0

*
*
*
* @see StoredProcedureQuery
*
*
*

public interface Query {

/**

* Execute a SELECT query and return the query results as an untyped
* {@link List}.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

@return
@throws

@throws

@throws

@throws

@throws

@throws

a list of the results, or an empty list if there are
no results

I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

PessimisticLockException if pessimistic locking

fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException if the query execution exceeds
the query timeout value set and the transaction

is rolled back

@SuppressWarnings({"rawtypes"})
List getResultList();

~
*
*

ERE I R T R I T A . R R N R SRR T

Execute

a SELECT query and return the query results as an untyped

{@link java.util.stream.Stream}.

<p>By default, this method delegates to {@code getResultlList().stream()},

however

persistence provider may choose to override this method

to provide additional capabilities.

@return
@throws

@throws

@throws

@throws

@throws

@throws

a stream of the results, or an empty stream if there
are no results

I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

PessimisticLockException if pessimistic locking

fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException if the query execution exceeds
the query timeout value set and the transaction

is rolled back

@see Stream
@see #getResultlist()

399

400

* @since 2.2

*/

@SuppressWarnings({"rawtypes"})
default Stream getResultStream() {

return

}

/**

* Execute
* @return
* @throws
* @throws
* @throws

@throws

@throws

@throws

@throws

@throws

L R S T T R R R .

*/

getResultLlist().stream();

a SELECT query that returns a single untyped result.
the result

NoResultException if there is no result
NonUniqueResultException if more than one result
I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

PessimisticLockException if pessimistic locking

fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException if the query execution exceeds
the query timeout value set and the transaction

is rolled back

Object getSingleResult();

/**

* Execute
* @return
* @throws

* @throws
*

* @throws

@throws

@throws

@throws

@throws

L R R I R R I

*/

a SELECT query that returns a single untyped result.
the result, or null if there is no result
NonUniqueResultException if more than one result
I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement
QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

PessimisticLockException if pessimistic locking

fails and the transaction is rolled back
LockTimeoutException if pessimistic locking

fails and only the statement is rolled back
PersistenceException if the query execution exceeds
the query timeout value set and the transaction

is rolled back

@since 3.2

Object getSingleResultOrNull();

/**
* Execute

* @return
* @throws

@throws

@throws

E O R T

an update or delete statement.

the number of entities updated or deleted
I1legalStateException if called for a Jakarta
Persistence query language SELECT statement or for
a criteria query

TransactionRequiredException if there is

no transaction or the persistence context has not
been joined to the transaction
QueryTimeoutException if the statement execution
exceeds the query timeout value set and only

* the statement is rolled back
* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction
* is rolled back
*/

int executeUpdate();

/**

* Set the maximum number of results to retrieve.

* @param maxResult maximum number of results to retrieve

* @return the same query instance

* @throws IllegalArgumentException if the argument is negative
*/
Query setMaxResults(int maxResult);

* The maximum number of results the query object was set to retrieve.
* Returns {@link Integer#MAX_VALUE} if {@link #setMaxResults} was not
* applied to the query object.

* @return maximum number of results

* @since 2.0

*/

int getMaxResults();

/'k*

* Set the position of the first result to retrieve.

* @param startPosition position of the first result, numbered from 0
* @return the same query instance

* @throws IllegalArgumentException if the argument is negative

*/
Query setFirstResult(int startPosition);

* The position of the first result the query object was set to
* retrieve. Returns {@code 0} if {@code setFirstResult} was not
* applied to the query object.

* @return position of the first result

* @since 2.0

*/

int getFirstResult();

~
*
*

Set a query property or hint. The hints elements may be used
to specify query properties and hints. Properties defined by
this specification must be observed by the provider.
Vendor-specific hints that are not recognized by a provider
must be silently ignored. Portable applications should not
rely on the standard timeout hint. Depending on the database
in use and the locking mechanisms used by the provider,

this hint may or may not be observed.

@param hintName name of the property or hint

@param value value for the property or hint

* @return the same query instance

* @throws IllegalArgumentException if the second argument is not
* valid for the implementation

*/
Query setHint(String hintName, Object value);

L I T R R

/**

* Get the properties and hints and associated values that are in
* effect for the query instance.

* @return query properties and hints

* @since 2.0

*/
Map<String, Object> getHints();

/**

401

Bind the value of a {@code Parameter} object.

@param param parameter object

@param value parameter value

@return the same query instance

@throws I1legalArgumentException if the parameter
does not correspond to a parameter of the

query
@since 2.0

ECEE I

*/
<T> Query setParameter (Parameter<T> param, T value);

/**

* Bind an instance of {@link java.util.Calendar} to a {@link Parameter} object.
* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
* @since 2.0
* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/
@Deprecated(since = "3.2")
Query setParameter(Parameter<Calendar> param, Calendar value,
TemporalType temporalType);

/**

* Bind an instance of {@link java.util.Date} to a {@link Parameter} object.
* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query

* @since 2.0

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/
@Deprecated(since = "3.2")
Query setParameter(Parameter<Date> param, Date value,

TemporalType temporalType);

/'k*

* Bind an argument value to a named parameter.

* @param name parameter name

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

* not correspond to a parameter of the query or if
* the argument is of incorrect type
*/

Query setParameter(String name, Object value);

/**

* Bind an instance of {@link java.util.Calendar} to a named parameter.
* @param name parameter name

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

* not correspond to a parameter of the query or if

* the value arqument is of incorrect type

* @deprecated Newly-written code should use the date/time types
*

defined in {@link java.time}.
*/
@Deprecated(since = "3.2")

402

Query setParameter(String name, Calendar value,
TemporalType temporalType);

/**

* Bind an instance of {@link java.util.Date} to a named parameter.
* @param name parameter name

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

* not correspond to a parameter of the query or if

* the value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
*

defined in {@link java.time}.
*/

@Deprecated(since = "3.2")

Query setParameter(String name, Date value,

TemporalType temporalType);

* Bind an arqument value to a positional parameter.

* @param position position

* @param value parameter value

* @return the same query instance

* @throws IllegalArqgumentException if position does not
* correspond to a positional parameter of the

* query or if the argument is of incorrect type

Query setParameter(int position, Object value);

/**

* Bind an instance of {@link java.util.Calendar} to a positional
* parameter.

* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if position does not

* correspond to a positional parameter of the query or
* if the value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")
Query setParameter(int position, Calendar value,

TemporalType temporalType);

/**

* Bind an instance of {@link java.util.Date} to a positional

* parameter.

* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if position does not
correspond to a positional parameter of the query or
if the value argument is of incorrect type

@deprecated Newly-written code should use the date/time types

defined in {@link java.time}.

* % * X

*/

@Deprecated(since = "3.2")

Query setParameter(int position, Date value,
TemporalType temporalType);

/'k*
* Get the parameter objects corresponding to the declared
* parameters of the query.

403

404

Returns empty set if the query has no parameters.

This method is not required to be supported for native
queries.

@return set of the parameter objects

* @throws IllegalStateException if invoked on a native

* % kX

* query when the implementation does not support
* this use

* @since 2.0

*/

Set<Parameter<?>> getParameters();

/**

Get the parameter object corresponding to the declared
parameter of the given name.

This method is not required to be supported for native
queries.

@param name parameter name

@return parameter object

* @throws IllegalArgumentException if the parameter of the

L R R

* specified name does not exist

* @throws IllegalStateException if invoked on a native

* query when the implementation does not support

* this use

* @since 2.0

*/

Parameter<?> getParameter(String name);

/**

* Get the parameter object corresponding to the declared

* parameter of the given name and type.

* This method is required to be supported for criteria queries
* only.

* @param name parameter name

* @param type type

* @return parameter object

* @throws IllegalArgumentException if the parameter of the

* specified name does not exist or is not assignable
* to the type

* @throws IllegalStateException if invoked on a native

* query or Jakarta Persistence query language query when
* the implementation does not support this use

*

@since 2.0
*/
<T> Parameter<T> getParameter(String name, Class<T> type);

/**

* Get the parameter object corresponding to the declared
* positional parameter with the given position.

* This method is not required to be supported for native
* queries.

* @param position position

* @return parameter object

* @throws IllegalArgumentException if the parameter with the
* specified position does not exist

* @throws IllegalStateException if invoked on a native

* query when the implementation does not support
* this use

* @since 2.0

*/
Parameter<?> getParameter(int position);

/**

* Get the parameter object corresponding to the declared

* positional parameter with the given position and type.

* This method is not required to be supported by the provider.
* @param position position

* @param type type

* @return parameter object

* @throws IllegalArgumentException if the parameter with the

* specified position does not exist or is not assignable
* to the type

* @throws IllegalStateException if invoked on a native

* query or Jakarta Persistence query language query when
* the implementation does not support this use

* @since 2.0

*/

<T> Parameter<T> getParameter(int position, Class<T> type);

/*‘k

* Return a boolean indicating whether a value has been bound
* to the parameter.

* @param param parameter object

* @return boolean indicating whether parameter has been bound
* @since 2.0

*/

boolean isBound(Parameter<?> param);

/**

* Return the input value bound to the parameter.

(Note that OUT parameters are unbound.)

@param param parameter object

@return parameter value

@throws I1legalArgumentException if the parameter is not
a parameter of the query

@throws I1legalStateException if the parameter has not
been bound

@since 2.0

* 0% kX Ok Xk X

*/
<T> T getParameterValue(Parameter<T> param);

/**

* Return the input value bound to the named parameter.

* (Note that OUT parameters are unbound.)

* @param name parameter name

* @return parameter value

* @throws IllegalStateException if the parameter has not

* been bound

* @throws IllegalArgumentException if the parameter of the
* specified name does not exist

* @since 2.0

*/

Object getParameterValue(String name);

/**

* Return the input value bound to the positional parameter.
* (Note that OUT parameters are unbound.)

* @param position position

* @return parameter value

* @throws IllegalStateException if the parameter has not

* been bound

* @throws IllegalArgumentException if the parameter with the
* specified position does not exist

* @since 2.0

*/
Object getParameterValue(int position);

/**

* Set the flush mode type to be used for the query execution.
* The flush mode type applies to the query regardless of the
* flush mode type in use for the entity manager.

* @param flushMode flush mode

* @return the same query instance

*/
Query setFlushMode(FlushModeType flushMode);

405

* Get the flush mode in effect for the query execution.

* If a flush mode has not been set for the query object,
* returns the flush mode in effect for the entity manager.
* @return flush mode

* @since 2.0

*/

FlushModeType getFlushMode();

/**

* Set the lock mode type to be used for the query execution.
* @param lockMode 1lock mode

* @return the same query instance

* @throws IllegalStateException if the query is found not to

* be a Jakarta Persistence query language SELECT query

* or a {@link jakarta.persistence.criteria.CriteriaQuery}
* query

* @since 2.0

*/

Query setLockMode(LockModeType lockMode);

/**

* Get the current lock mode for the query. Returns null if a

* lock mode has not been set on the query object.

* @return lock mode

* @throws IllegalStateException if the query is found not to

* be a Jakarta Persistence query language SELECT query

* or a {@link jakarta.persistence.criteria.CriteriaQuery}
* query

*

@since 2.0
*/
LockModeType getLockMode();

* Set the cache retrieval mode that is in effect during query
* execution. This cache retrieval mode overrides the cache
* retrieve mode in use by the entity manager.
* @param cacheRetrieveMode cache retrieval mode
* @return the same query instance

* @since 3.2

*/
Query setCacheRetrieveMode(CacheRetrieveMode cacheRetrieveMode);

/**

* Set the cache storage mode that is in effect during query
* execution. This cache storage mode overrides the cache

* storage mode in use by the entity manager.

* @param cacheStoreMode cache storage mode

* @return the same query instance

* @since 3.2

*/
Query setCacheStoreMode(CacheStoreMode cacheStoreMode);

/**

* The cache retrieval mode that will be in effect during query
* execution.

* @since 3.2

*/

CacheRetrieveMode getCacheRetrieveMode();

/**

* The cache storage mode that will be in effect during query
* execution.

* @since 3.2

*/

CacheStoreMode getCacheStoreMode();

406

B.7. Ty

pac

imp
imp
imp
imp

/**
*
*
*
*
*
*
*
*

*/
pub

* Set the query timeout, in milliseconds. This is a hint,
* and is an alternative to {@linkplain #setHint setting
* the hint} {@code jakarta.persistence.query.timeout}.
* @param timeout the timeout, in milliseconds, or null to
* indicate no timeout
* @return the same query instance
* @since 3.2
*/
Query setTimeout(Integer timeout);

/**

* The query timeout.
* @since 3.2

*/

Integer getTimeout();

/**

* Return an object of the specified type to allow access to
* 3 provider-specific API. If the provider implementation of
* {@code Query} does not support the given type, the

* {@link PersistenceException} is thrown.
* @param cls the type of the object to be returned.
* This 1is usually either the underlying class
* implementing {@code Query} or an interface it
* implements.
* @return an instance of the specified class
* @throws PersistenceException if the provider does not support
* the given type
* @since 2.0
*/
<T> T unwrap(Class<T> cls);
pedQuery
kage jakarta.persistence;

ort java.util.list;

ort java.util.Date;

ort java.util.Calendar;

ort java.util.stream.Stream;

Interface used to control the execution of typed queries.
@param <X> query result type

@see Query
@see Parameter

@since 2.0

lic interface TypedQuery<X> extends Query {

/**

* Execute a SELECT query and return the query results as a typed

* {@link List List<X&qgt;}.

* @return a list of the results, each of type {@link X}, or an
empty list if there are no results

@throws IllegalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is

* % ¥ * *

407

408

EE R T S

*/
Lis

~
*
*

E O B R R I R N R

*

*

*/
def

}

/**
*
*
*
*
*
*

*

L . R T R T R

rolled back

@throws TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

@throws PessimisticlLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

t<X> getResultList();

Execute a SELECT query and return the query result as a typed
{@link java.util.stream.Stream Stream<X>}.

<p>By default, this method delegates to {@link List#stream()
getResultList().stream()}, however, persistence provider may
choose to override this method to provide additional capabilities.

@return a stream of the results, each of type {@link X}, or an
empty stream if there are no results

@throws I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

@throws PessimisticlLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

@see Stream

@see #getResultList()

@since 2.2

ault Stream<X> getResultStream() {
return getResultList().stream();

Execute a SELECT query that returns a single result.

@return the result, of type {@link X}

@throws NoResultException if there is no result

@throws NonUniqueResultException if more than one result

@throws I1legalStateException if called for a Jakarta
Persistence query language UPDATE or DELETE statement

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws TransactionRequiredException if a lock mode other than
{@code NONE} has been set and there is no transaction
or the persistence context has not been joined to the
transaction

@throws PessimisticLockException if pessimistic locking
fails and the transaction is rolled back

@throws LockTimeoutException if pessimistic locking
fails and only the statement is rolled back

* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction
* is rolled back
*/

X getSingleResult();

/**

* Execute a SELECT query that returns a single untyped result.
* @return the result, of type {@link X}, or null if there is no
* result

* @throws NonUniqueResultException if more than one result

* @throws IllegalStateException if called for a Jakarta

* Persistence query language UPDATE or DELETE statement
* @throws QueryTimeoutException if the query execution exceeds
* the query timeout value set and only the statement is
* rolled back

* @throws TransactionRequiredException if a lock mode other than
* {@code NONE} has been set and there is no transaction
* or the persistence context has not been joined to the
* transaction

* @throws PessimisticLockException if pessimistic locking

* fails and the transaction is rolled back

* @throws LockTimeoutException if pessimistic locking

* fails and only the statement is rolled back

* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction

* is rolled back

*
*

@since 3.2
*/
X getSingleResultOrNull();

/**

* Set the maximum number of results to retrieve.

* @param maxResult maximum number of results to retrieve

* @return the same query instance

* @throws IllegalArgumentException if the argument is negative
*/

TypedQuery<X> setMaxResults(int maxResult);

/**

* Set the position of the first result to retrieve.

* @param startPosition position of the first result,

* numbered from 0

* @return the same query instance

* @throws IllegalArgumentException if the argument is negative
*/

TypedQuery<X> setFirstResult(int startPosition);

~
*
*

Set a query property or hint. The hints elements may be used
to specify query properties and hints. Properties defined by
this specification must be observed by the provider.
Vendor-specific hints that are not recognized by a provider
must be silently ignored. Portable applications should not
rely on the standard timeout hint. Depending on the database
in use and the locking mechanisms used by the provider,

this hint may or may not be observed.

@param hintName name of property or hint

@param value value for the property or hint

@return the same query instance

* @throws IllegalArgumentException if the second argument is not
* valid for the implementation

*/

TypedQuery<X> setHint(String hintName, Object value);

L I R T T R

/**

409

* Bind the value of a {@code Parameter} object.

* @param param parameter object

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if the parameter

* does not correspond to a parameter of the
* query
*/

<T> TypedQuery<X> setParameter(Parameter<T> param, T value);

/**

* Bind an instance of {@link java.util.Calendar} to a {@link Parameter} object.
* @param param parameter object
* @param value parameter value
* @param temporalType temporal type
* @return the same query instance
* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.
*/
@Deprecated(since = "3.2")
TypedQuery<X> setParameter(Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

/'k*

* Bind an instance of {@link java.util.Date} to a {@link Parameter} object.

* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query

* @deprecated Newly-written code should use the date/time types

* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")

TypedQuery<X> setParameter(Parameter<Date> param, Date value,
TemporalType temporalType);

/**

* Bind an argument value to a named parameter.

* @param name parameter name

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

* not correspond to a parameter of the query or if
* the argument is of incorrect type
*/

TypedQuery<X> setParameter(String name, Object value);

/**

* Bind an instance of {@link java.util.Calendar} to a named parameter.

* @param name parameter name

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

* not correspond to a parameter of the query or if

* the value arqument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")
TypedQuery<X> setParameter(String name, Calendar value,
TemporalType temporalType);

410

~
*
*

* Bind an instance of {@link java.util.Date} to a named parameter.
* @param name parameter name

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

* not correspond to a parameter of the query or if

* the value arqument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")
TypedQuery<X> setParameter(String name, Date value,
TemporalType temporalType);

* Bind an argument value to a positional parameter.

* @param position position

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if position does not
* correspond to a positional parameter of the

* query or if the argument is of incorrect type

TypedQuery<X> setParameter(int position, Object value);

/**

* Bind an instance of {@link java.util.Calendar} to a positional
* parameter.

* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if position does not

* correspond to a positional parameter of the query

* or if the value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")
TypedQuery<X> setParameter(int position, Calendar value,
TemporalType temporalType);

/**

* Bind an instance of {@link java.util.Date} to a positional
* parameter.

* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArqgumentException if position does not
* correspond to a positional parameter of the query
* or if the value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")

TypedQuery<X> setParameter(int position, Date value,

TemporalType temporalType);

/**

* Set the flush mode type to be used for the query execution.
* The flush mode type applies to the query regardless of the
* flush mode type in use for the entity manager.

* @param flushMode flush mode

411

* @return the same query instance
*/
TypedQuery<X> setFlushMode(FlushModeType flushMode);

/**
Set the lock mode type to be used for the query execution.
@param lockMode 1lock mode
@return the same query instance

be a Jakarta Persistence query language SELECT query

or a {@link jakarta.persistence.criteria.CriteriaQuery}

*
*
*
* @throws IllegalStateException if the query is found not to
*
*
*

query
*/
TypedQuery<X> setLockMode(LockModeType lockMode);

* Set the cache retrieval mode that is in effect during

* query execution. This cache retrieval mode overrides the
* cache retrieve mode in use by the entity manager.

* @param cacheRetrieveMode cache retrieval mode

* @return the same query instance

* @since 3.2

*/

TypedQuery<X> setCacheRetrieveMode(CacheRetrieveMode cacheRetrieveMode);

/**

* Set the cache storage mode that is in effect during

* query execution. This cache storage mode overrides the

* cache storage mode in use by the entity manager.

* @param cacheStoreMode cache storage mode

* @return the same query instance

* @since 3.2

*/

TypedQuery<X> setCacheStoreMode(CacheStoreMode cacheStoreMode);

* Set the query timeout, in milliseconds. This is a hint,
* and is an alternative to {@linkplain #setHint setting

* the hint} {@code jakarta.persistence.query.timeout}.

* @param timeout the timeout, in milliseconds, or null to
* indicate no timeout

* @return the same query instance

* @since 3.2

*/

TypedQuery<X> setTimeout(Integer timeout);

B.8. StoredProcedureQuery

import java.util.Calendar;
import java.util.Date;
import java.util.List;

/**

Interface used to control stored procedure query execution.

<p>

Stored procedure query execution may be controlled in accordance with

the following:

The {@link #setParameter} methods are used to set the values of

all required {@code IN} and {@code INOUT} parameters. It is not
required to set the values of stored procedure parameters for which
default values have been defined by the stored procedure.</1i>

 When {@link #getResultlList} and {@link #getSingleResult} are

*
*
*
*
*
* <>
*
*
*
*
*

412

* called on a {@code StoredProcedureQuery} object, the provider calls
* {@link #execute} on an unexecuted stored procedure query before

* processing {@code getResultlList} or {@code getSingleResult}.</1li>

* <1i> When {@link #executeUpdate} is called on a

* {@code StoredProcedureQuery} object, the provider will call

* {@link #execute} on an unexecuted stored procedure query, followed
* by {@link #getUpdateCount}. The results of {@code executeUpdate} will
* be those of {@code getUpdateCount}.</1i>

* <1i> The {@link #execute} method supports both the simple case where
* scalar results are passed back only via {@code INOUT} and {@code OUT}
* parameters as well as the most general case (multiple result sets

* and/or update counts, possibly also in combination with output

* parameter values).</1i>

* <1i> The {@code execute} method returns true if the first result is
* 3 result set, and false if it is an update count or there are no

* results other than through {@code INOUT} and {@code OUT} parameters,
* if any.</1i>

* <1i> If the {@code execute} method returns true, the pending result
* set can be obtained by calling {@link #getResultList} or

* {@link #getSingleResult}.</1i>

* <1i> The {@link #hasMoreResults} method can then be used to test for
* further results.</1i>

* <1i> If {@code execute} or {@code hasMoreResults} returns false, the
* {@link #getUpdateCount} method can be called to obtain the pending
* result if it is an update count. The {@code getUpdateCount} method

* will return either the update count (zero or greater) or -1 if there

* is no update count (i.e., either the next result is a result set or

* there is no next update count).</1li>

* <1i> For portability, results that correspond to JDBC result sets

* and update counts need to be processed before the values of any

* {@code INOUT} or {@code OUT} parameters are extracted.</1i>

* <1i> After results returned through {@link #getResultlList} and

* {olink #getUpdateCount} have been exhausted, results returned through

* {@code INOUT} and {@code OUT} parameters can be retrieved.</1i>

* <1i> The {@link #getOutputParameterValue} methods are used to

* retrieve the values passed back from the procedure through

* {@code INOUT} and {@code OUT} parameters.</1i>

* <1i> When using {@code REF_CURSOR} parameters for result sets the

* ypdate counts should be exhausted before calling {@link #getResultList}
* to retrieve the result set. Alternatively, the {@code REF_CURSOR}

* result set can be retrieved through {@link #getOutputParameterValue}.

* Result set mappings are applied to results corresponding to

* {@code REF_CURSOR} parameters in the order the {@code REF_CURSOR}

* parameters were registered with the query.</1i>

* <1i> In the simplest case, where results are returned only via

* {@code INOUT} and {@code OUT} parameters, {@code execute} can be

* followed immediately by calls to {@link #getOutputParameterValue}.

* </1i>

*

*

*

*

*

*

@see Query
@see Parameter

@since 2.1
*/
public interface StoredProcedureQuery extends Query {
/**
* Set a query property or hint. The hints elements may be used
* to specify query properties and hints. Properties defined by
* this specification must be observed by the provider.
* Vendor-specific hints that are not recognized by a provider
* must be silently ignored. Portable applications should not
* rely on the standard timeout hint. Depending on the database
* in use, this hint may or may not be observed.
* @param hintName name of the property or hint
*

@param value value for the property or hint

413

* @return the same query instance

* @throws IllegalArgumentException if the second argument is not
* valid for the implementation

*/

StoredProcedureQuery setHint(String hintName, Object value);

/**
* Bind the value of a {@code Parameter} object.
* @param param parameter object
* @param value parameter value
* @return the same query instance
* @throws IllegalArgumentException if the parameter does not
* correspond to a parameter of the query
*/
<T> StoredProcedureQuery setParameter(Parameter<T> param,
T value);

~
*
*

Bind an instance of {@link java.util.Calendar} to a {@link Parameter} object.
@param param parameter object
@param value parameter value
@param temporalType temporal type
@return the same query instance
@throws I1legalArgumentException if the parameter does not

correspond to a parameter of the query
@deprecated Newly-written code should use the date/time types

defined in {@link java.time}.

ECE S T

*/

@Deprecated(since = "3.2")

StoredProcedureQuery setParameter(Parameter<Calendar> param,
Calendar value,
TemporalType temporalType);

/**
* Bind an instance of {@link java.util.Date} to a {@link Parameter} object.
* @param param parameter object

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter does not

* correspond to a parameter of the query

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")
StoredProcedureQuery setParameter(Parameter<Date> param,
Date value,
TemporalType temporalType);

/**

* Bind an argument value to a named parameter.

* @param name parameter name

* @param value parameter value

* @return the same query instance

* @throws IllegalArqumentException if the parameter name does

* not correspond to a parameter of the query or if the
* argument is of incorrect type
*/

StoredProcedureQuery setParameter(String name, Object value);

/**

* Bind an instance of {@code java.util.Calendar} to a named parameter.
* @param name parameter name

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if the parameter name does

414

* not correspond to a parameter of the query or if the

* value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")

StoredProcedureQuery setParameter(String name,
Calendar value,
TemporalType temporalType);

/**

* Bind an instance of {@code java.util.Date} to a named parameter.

* @param name parameter name

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArqgumentException if the parameter name does

* not correspond to a parameter of the query or if the
* value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
* defined in {@link java.time}.

*/

@Deprecated(since = "3.2")
StoredProcedureQuery setParameter(String name,
Date value,
TemporalType temporalType);

/**

* Bind an arqument value to a positional parameter.

* @param position position

* @param value parameter value

* @return the same query instance

* @throws IllegalArgumentException if position does not

* correspond to a positional parameter of the query
* or if the argument is of incorrect type

*/

StoredProcedureQuery setParameter(int position, Object value);

/**

* Bind an instance of {@code java.util.Calendar} to a positional
* parameter.

* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if position does not

* correspond to a positional parameter of the query or
* if the value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
*

defined in {@link java.time}.

*/

@Deprecated(since = "3.2")

StoredProcedureQuery setParameter(int position,

Calendar value,
TemporalType temporalType);

/**

* Bind an instance of {@code java.util.Date} to a positional parameter.
* @param position position

* @param value parameter value

* @param temporalType temporal type

* @return the same query instance

* @throws IllegalArgumentException if position does not

* correspond to a positional parameter of the query or
* if the value argument is of incorrect type

* @deprecated Newly-written code should use the date/time types
*

defined in {@link java.time}.

415

*/
@Deprecated(since = "3.2")
StoredProcedureQuery setParameter(int position,
Date value,
TemporalType temporalType);

/**

* Set the flush mode type to be used for the query execution.
* The flush mode type applies to the query regardless of the
* flush mode type in use for the entity manager.

* @param flushMode flush mode

* @return the same query instance

*/

StoredProcedureQuery setFlushMode(FlushModeType flushMode);

* Set the cache retrieval mode that is in effect during

* query execution. This cache retrieval mode overrides the

* cache retrieve mode in use by the entity manager.

* @param cacheRetrieveMode cache retrieval mode

* @return the same query instance

* @since 3.2

*/

StoredProcedureQuery setCacheRetrieveMode(CacheRetrieveMode cacheRetrieveMode);

/**

* Set the cache storage mode that is in effect during

* query execution. This cache storage mode overrides the

* cache storage mode in use by the entity manager.

* @param cacheStoreMode cache storage mode

* @return the same query instance

* @since 3.2

*/

StoredProcedureQuery setCacheStoreMode(CacheStoreMode cacheStorelMode);

* Set the query timeout, in milliseconds. This is a hint,
* and is an alternative to {@linkplain #setHint setting

* the hint} {@code jakarta.persistence.query.timeout}.

* @param timeout the timeout, in milliseconds, or null to
* indicate no timeout

* @return the same query instance

* @since 3.2

*/

StoredProcedureQuery setTimeout(Integer timeout);

/**

* Register a positional parameter.
A1l parameters must be registered.
@param position parameter position
@param type type of the parameter
@param mode parameter mode
* @return the same query instance
*/
StoredProcedureQuery registerStoredProcedureParameter(
int position,
(lass<?> type,
ParameterMode mode);

* X kX

/**

* Register a named parameter.

* @param parameterName name of the parameter as registered or
* specified in metadata

* @param type type of the parameter

* @param mode parameter mode

* @return the same query instance

*/

416

Sto
S
C
P

~
*
*

0% ¥ ok ok ok X X X F

*/
0bj

~
*
*

ECIE R I T I I

*/
Obj

~
*
*

* 0% ok Xk Xk X * X

*/
boo

/**

*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/
int

/**

redProcedureQuery registerStoredProcedureParameter(
tring parameterName,

lass<?> type,

arameterMode mode);

Retrieve a value passed back from the procedure
through an INOUT or OUT parameter.
For portability, all results corresponding to result sets
and update counts must be retrieved before the values of
output parameters.
@param position parameter position
@return the result that is passed back through the parameter
@throws I1legalArgumentException if the position does

not correspond to a parameter of the query or is

not an INOUT or OUT parameter

ect getOutputParameterValue(int position);

Retrieve a value passed back from the procedure
through an INOUT or OUT parameter.
For portability, all results corresponding to result sets
and update counts must be retrieved before the values of
output parameters.
@param parameterName name of the parameter as registered or
specified in metadata
@return the result that is passed back through the parameter
@throws I1legalArgumentException if the parameter name does
not correspond to a parameter of the query or is
not an INOUT or OUT parameter

ect getOutputParameterValue(String parameterName);

Return true if the first result corresponds to a result set,
and false if it is an update count or if there are no results
other than through INOUT and OUT parameters, if any.
@return true if first result corresponds to result set
@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back
@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

lean execute();

Return the update count of -1 if there is no pending result or
if the first result is not an update count. The provider will

call {@code execute} on the query if needed.

@return the update count or -1 if there is no pending result

or if the next result is not an update count.

@throws TransactionRequiredException if there is
no transaction or the persistence context has not
been joined to the transaction

@throws QueryTimeoutException if the statement execution
exceeds the query timeout value set and only
the statement is rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

executelpdate();

417

418

* Retrieve the list of results from the next result set.

* The provider will call {@code execute} on the query

* if needed.

* A {@code REF_CURSOR} result set, if any, is retrieved

* in the order the {@code REF_CURSOR} parameter was

* registered with the query.

* @return a list of the results or null is the next item is not
* 3 result set

* @throws QueryTimeoutException if the query execution exceeds
* the query timeout value set and only the statement is
* rolled back

* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction

* is rolled back

*/

List getResultList();

~
*
*

Retrieve a single result from the next result set.

The provider will call {@code execute} on the query

if needed.

A {@code REF_CURSOR} result set, if any, is retrieved

in the order the {@code REF_CURSOR} parameter was

registered with the query.

@return the result or null if the next item is not a result set

@throws NoResultException if there is no result in the next
result set

@throws NonUniqueResultException if more than one result

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

L R R T R R R

*/
Object getSingleResult();

~
*
*

Retrieve a single result from the next result set.

The provider will call {@code execute} on the query

if needed.

A {@code REF_CURSOR} result set, if any, is retrieved

in the order the {@code REF_CURSOR} parameter was

registered with the query.

@return the result or null if the next item is not a result set
or if there is no result in the next result set

@throws NonUniqueResultException if more than one result

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

L R R I R R I

*/
Object getSingleResultOrNull();

~
*
*

Return true if the next result corresponds to a result set,

and false if it is an update count or if there are no results

other than through INOUT and OUT parameters, if any.

@return true if next result corresponds to result set

@throws QueryTimeoutException if the query execution exceeds
the query timeout value set and only the statement is
rolled back

@throws PersistenceException if the query execution exceeds
the query timeout value set and the transaction
is rolled back

L . R T R T R

*/
boolean hasMoreResults();

/**

* Return the update count or -1 if there is no pending result
* or if the next result is not an update count.

* @return update count or -1 if there is no pending result or if
* the next result is not an update count

* @throws QueryTimeoutException if the query execution exceeds
* the query timeout value set and only the statement is
* rolled back

* @throws PersistenceException if the query execution exceeds

* the query timeout value set and the transaction

* is rolled back

*/
int getUpdateCount();
}
B.9. Tuple

import java.util.List;

/**

* Interface for extracting the elements of a query result tuple.
*
* @see TupleElement
*
*

@since 2.0
*/
public interface Tuple {

/**

* Get the value of the specified tuple element.

* @param tupleElement tuple element

* @return value of tuple element

* @throws IllegalArgumentException if tuple element

* does not correspond to an element in the
* query result tuple
*/

<X> X get(TupleElement<X> tupleElement);

~
*
*

Get the value of the tuple element to which the

specified alias has been assigned.

@param alias alias assigned to tuple element

@param type of the tuple element

@return value of the tuple element

@throws I1legalArgumentException if alias
does not correspond to an element in the
query result tuple or element cannot be
assigned to the specified type

* % ¥ Xk kX X X

*/
<X> X get(String alias, Class<X> type);

/**
* Get the value of the tuple element to which the
* specified alias has been assigned.
* @param alias alias assigned to tuple element
* @return value of the tuple element
* @throws IllegalArgumentException if alias
* does not correspond to an element in the
* query result tuple
*/
Object get(String alias);

419

~
*
*

Get the value of the element at the specified

position in the result tuple. The first position

is 0.

@param i position in result tuple

@param type type of the tuple element

@return value of the tuple element

@throws I1legalArgumentException if i exceeds
length of result tuple or element cannot
be assigned to the specified type

* % ¥ ¥k kX X X

*/
<X> X get(int i, Class<X> type);

/**

* Get the value of the element at the specified

* position in the result tuple. The first position

is 0.

@param i position in result tuple

@return value of the tuple element

@throws IllegalArgumentException if i exceeds
length of result tuple

* % ¥ * *

*/
Object get(int 1i);

/**

* Return the values of the result tuple elements as
* an array.

* @return tuple element values

*/
Object[] toArray();

/**

* Return the tuple elements.

* @return tuple elements

*/

List<TupleElement<?>> getElements();

B.10. TupleElement

/**

The {@code TupleElement} interface defines an element that is
returned in a query result tuple.

@param <X> the type of the element

*
*
*
*
*
* @see Tuple

*

* @since 2.0

*/

public interface TupleElement<X> {

/**

* Return the Java type of the tuple element.
* @return the Java type of the tuple element
*

/
(lass<? extends X> getJavaType();

/**

* Return the alias assigned to the tuple element or null,
* if no alias has been assigned.

* @return alias

*/

String getAlias();

420

B.11. Parameter

/**

Type for query parameter objects.
@param <T> the type of the parameter

*
*
*
*
* @see Query

* @see TypedQuery

*

* @since 2.0

*/

public interface Parameter<T> {

/'k*

* Return the parameter name, or null if the parameter is
* not a named parameter or no name has been assigned.

* @return parameter name

*/

String getName();

/**

* Return the parameter position, or null if the parameter
* is not a positional parameter.

* @return position of parameter

*/

Integer getPosition();

/**
* Return the Java type of the parameter. Values bound to
* the parameter must be assignable to this type.
* This method is required to be supported for criteria
* queries only. Applications that use this method for
* Jakarta Persistence query language queries and native
* queries will not be portable.
* @return the Java type of the parameter
* @throws IllegalStateException if invoked on a parameter
* obtained from a query language query or native
* query when the implementation does not support
* this usage
*/
Class<T> getParameterType();
}
B.12. Graph

import jakarta.persistence.metamodel.Attribute;
import jakarta.persistence.metamodel.MapAttribute;
import jakarta.persistence.metamodel.PluralAttribute;

import java.util.list;

/**

Declares operations common to {@link EntityGraph} and {@link Subgraph}.

*
*
* @see EntityGraph

* @see Subgraph

*

* @since 3.2

*/

public interface Graph<T> {

421

~
*
*

* Get an existing attribute node for the attribute with the given
* name, or add a new attribute node if there is no existing node.
*

* @param attributeName name of the attribute

* @return the attribute node

* @throws IllegalArgumentException if the attribute is not an

* attribute of this entity.

* @throws IllegalStateException if the EntityGraph has been

* statically defined

*

* @since 3.2

*/

<Y> AttributeNode<Y> addAttributeNode(String attributeName);

/**

* Get an existing attribute node for the given attribute, or add
* a new attribute node if there is no existing node.

*

* @param attribute attribute

* @return the attribute node

* @throws IllegalStateException if the EntityGraph has been

* statically defined

*

*

@since 3.2
*/
<Y> AttributeNode<Y> addAttributeNode(Attribute<? super T, Y> attribute);

/**
* Determine if there is an existing attribute node for the attribute
* with the given name.

@param attributeName name of the attribute

@return true if there is an existing attribute node

@throws I1legalArgumentException if the attribute is not an
attribute of this entity.

* 0%k Xk X %

@since 3.2
*/
boolean hasAttributeNode(String attributeName);

/**

* Determine if there is an existing attribute node for the given
* attribute.

*

* @param attribute attribute

* @return true if there is an existing attribute node

*

* @since 3.2

*/

boolean hasAttributeNode(Attribute<? super T, ?> attribute);

/**

* Get an existing attribute node for the attribute with the given
* name.

*

* @param attributeName name of the attribute

* @return the attribute node

* @throws IllegalArgumentException if the attribute is not an

* attribute of this entity.

* @throws java.util.NoSuchElementException if there is no existing
* node for the attribute

*

*

@since 3.2
*/
<Y> AttributeNode<Y> getAttributeNode(String attributeName);

422

~
*
*

ECE I

*/
<Y>

~
*
*

L I R T R T R

*/
voi

~
*
*

L I R T R I D R

*/
voi

/'k*
*
*
*
*
*
*
*

*/
Voi

~
*
*

ECEE I T S

*/
voi

Get an existing attribute node for the given attribute.

@param attribute attribute

@return the attribute node

@throws java.util.NoSuchElementException if there is no existing
node for the attribute

@since 3.2

AttributeNode<Y> getAttributeNode(Attribute<? super T, Y> attribute);

Remove an attribute node from the entity graph.

When this graph is interpreted as a load graph, this operation
suppresses inclusion of an attribute mapped for eager fetching.
The effect of this call may be overridden by subsequent
invocations of {@link #addAttributeNode} or {@link #addSubgraph}.
If there is no existing node for the given attribute name, this
operation has no effect.

@param attributeName name of the attribute
@since 3.2

d removeAttributeNode(String attributeName);

Remove an attribute node from the entity graph.

When this graph is interpreted as a load graph, this operation
suppresses inclusion of an attribute mapped for eager fetching.
The effect of this call may be overridden by subsequent
invocations of {@link #addAttributeNode} or {@link #addSubgraph}.
If there is no existing node for the given attribute, this
operation has no effect.

@param attribute attribute
@since 3.2

d removeAttributeNode(Attribute<? super T, ?> attribute);

Remove all attribute nodes of the given attribute types.

When this graph is interpreted as a load graph, this operation
suppresses inclusion of attributes mapped for eager fetching.

The effect of this call may be overridden by subsequent
invocations of {@link #addAttributeNode} or {@link #addSubgraph}.

@since 3.2

d removeAttributeNodes(Attribute.PersistentAttributeType nodeTypes);

Add one or more attribute nodes to the entity graph.

If there is already an existing node for one of the given
attribute names, that particular argument is ignored and
has no effect.

@param attributeName name of the attribute

@throws I1legalArgumentException if the attribute is not an
attribute of this managed type.

@throws I1legalStateException if the EntityGraph has been
statically defined

d addAttributeNodes(String... attributeName);

423

~
*
*

Add one or more attribute nodes to the entity graph.

If there is already an existing node for one of the given
attributes, that particular argument is ignored and has no
effect.

@param attribute attribute
@throws I1legalStateException if this EntityGraph has been
statically defined

ECE I

*/
void addAttributeNodes(Attribute<? super T, ?>... attribute);

/**

* Add a node to the graph that corresponds to a managed

* type. This allows for construction of multi-node entity graphs
* that include related managed types.

*

* @param attribute attribute

* @return subgraph for the attribute

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type

* @throws IllegalStateException if the EntityGraph has been
* statically defined

*/
<X> Subgraph<X> addSubgraph(Attribute<? super T, X> attribute);
/**

* Add a node to the graph that corresponds to a managed

* type with inheritance. This allows for multiple subclass
* subgraphs to be defined for this node of the entity

* graph. Subclass subgraphs will automatically include the

* specified attributes of superclass subgraphs.

*

* @param attribute attribute

* @param type entity subclass

* @return subgraph for the attribute

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type

* @throws IllegalStateException if the EntityGraph has been
* statically defined

*

* @since 3.2

*/

<Y> Subgraph<Y> addTreatedSubgraph(Attribute<? super T, ? super Y> attribute, Class<Y> type);
/**

* Add a node to the graph that corresponds to a managed type
* with inheritance. This allows for multiple subclass

* subgraphs to be defined for this node of the entity graph.
* Subclass subgraphs will automatically include the specified
* attributes of superclass subgraphs

*

* @param attribute attribute

* @param type entity subclass

* @return subgraph for the attribute

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type

* @throws IllegalStateException if this EntityGraph has been
* statically defined

*

@deprecated use {@link #addTreatedSubgraph(Attribute, Class)}

*/

@Deprecated(since = "3.2", forRemoval = true)

<X> Subgraph<? extends X> addSubgraph(Attribute<? super T, X> attribute, Class<? extends X> type);

/**

* Add a node to the graph that corresponds to a managed type.

424

This allows for construction of multi-node entity graphs
that include related managed types.

@param attributeName name of the attribute

@return subgraph for the attribute

@throws IllegalArgumentException if the attribute is not an
attribute of this managed type.

@throws I1legalArgumentException if the attribute's target
type is not a managed type

@throws I1legalStateException if this EntityGraph has been
statically defined

L R N R R

*/
<X> Subgraph<X> addSubgraph(String attributeName);

~
*
*

Add a node to the graph that corresponds to a managed
type with inheritance. This allows for multiple subclass
subgraphs to be defined for this node of the entity
graph. Subclass subgraphs will automatically include the
specified attributes of superclass subgraphs

@param attributeName name of the attribute

@param type entity subclass

@return subgraph for the attribute

@throws I1legalArgumentException if the attribute is not
an attribute of this managed type.

@throws I1legalArgumentException if the attribute's target
type is not a managed type

@throws I1llegalStateException if this EntityGraph has been

* statically defined

*/

<X> Subgraph<X> addSubgraph(String attributeName, Class<X> type);

ECEE I T R S N

~
*
*

Add a node to the graph that corresponds to a collection element
that is a managed type. This allows for construction of
multi-node entity graphs that include related managed types.

@param attribute attribute

@return subgraph for the element attribute

@throws I1legalArgumentException if the attribute's target type
is not an entity

@throws I1legalStateException if this EntityGraph has been
statically defined

ECE R R N S N S

@since 3.2
*/

<E> Subgraph<E> addElementSubgraph(PluralAttribute<? super T, ?, E> attribute);

/**

* Add a node to the graph that corresponds to a collection element
* that is a managed type. This allows for construction of

* multi-node entity graphs that include related managed types.

*

* @param attribute attribute

* @return subgraph for the element attribute

* @throws IllegalArgumentException if the attribute's target type
* is not an entity

* @throws IllegalStateException if this EntityGraph has been

* statically defined

*

*

@since 3.2
*/

<E> Subgraph<E> addTreatedElementSubgraph(PluralAttribute<? super T, ?, ? super E> attribute, Class<E> type);

/**

* Add a node to the graph that corresponds to a collection element

425

* that is a managed type. This allows for construction of

* multi-node entity graphs that include related managed types.
*

* @param attributeName name of the attribute

* @return subgraph for the element attribute

* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type

* @throws IllegalStateException if this EntityGraph has been
* statically defined

*/
<X> Subgraph<X> addElementSubgraph(String attributeName);
/**

* Add a node to the graph that corresponds to a collection element
* that is a managed type. This allows for construction of

* multi-node entity graphs that include related managed types.
*

* @param attributeName name of the attribute

* @param type entity subclass

* @return subgraph for the element attribute

* @throws IllegalArgumentException if the attribute is not an
* attribute of this entity.

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type

* @throws IllegalStateException if this EntityGraph has been
* statically defined

*/
<X> Subgraph<X> addElementSubgraph(String attributeName, Class<X> type);
/**

* Add a node to the graph that corresponds to a map key

* that is a managed type. This allows for construction of

* multi-node entity graphs that include related managed types.
*

* @param attribute attribute

* @return subgraph for the key attribute

* @throws IllegalArgumentException if the attribute's target
* type is not a managed type entity

* @throws IllegalStateException if this EntityGraph has been
*

statically defined
*/
<K> Subgraph<K> addMapKeySubgraph(MapAttribute<? super T, K, ?> attribute);

~
*
*

Add a node to the graph that corresponds to a map key

that is a managed type with inheritance. This allows for
construction of multi-node entity graphs that include related
managed types. Subclass subgraphs will automatically include
the specified attributes of superclass subgraphs

@param attribute attribute

@param type entity subclass

@return subgraph for the attribute

@throws I1legalArgumentException if the attribute's target
type is not a managed type entity

@throws I1legalStateException if this EntityGraph has been
statically defined

L I R S T R R

*/
<K> Subgraph<K> addTreatedMapKeySubgraph(MapAttribute<? super T, ? super K, ?> attribute, Class<K> type);
/**

* Add a node to the graph that corresponds to a map key

* that is a managed type. This allows for construction of

* multi-node entity graphs that include related managed types.
*

426

* @param attribute attribute

* @return subgraph for the key attribute

* @throws IllegalArgumentException if the attribute's target

* type is not a managed type entity

* @throws IllegalStateException if this EntityGraph has been

* statically defined

* @deprecated use {@link #addMapKeySubgraph(MapAttribute)}

*/
@Deprecated(since = "3.2", forRemoval = true)

<X> Subgraph<X> addKeySubgraph(Attribute<? super T, X> attribute);

/*‘k

* Add a node to the graph that corresponds to a map key

* that is a managed type with inheritance. This allows for

* construction of multi-node entity graphs that include related
* managed types. Subclass subgraphs will automatically include
* the specified attributes of superclass subgraphs

*

* @param attribute attribute

* @param type entity subclass

* @return subgraph for the attribute

* @throws IllegalArgumentException if the attribute's target

* type is not a managed type entity

* @throws IllegalStateException if this EntityGraph has been

* statically defined

*

@deprecated use {@link #addTreatedMapKeySubgraph(MapAttribute, Class)}
*/
@Deprecated(since = "3.2", forRemoval = true)
<X> Subgraph<? extends X> addKeySubgraph(Attribute<? super T, X> attribute, Class<? extends X> type);

~
*
*

Add a node to the graph that corresponds to a map key
that is a managed type. This allows for construction of
multi-node entity graphs that include related managed types.

@param attributeName name of the attribute

@return subgraph for the key attribute

@throws I1legalArgumentException if the attribute is not an
attribute of this entity.

@throws I1legalArgumentException if the attribute's target
type is not a managed type

@throws I1legalStateException if this EntityGraph has been
statically defined

L R N R R

*/
<X> Subgraph<X> addKeySubgraph(String attributeName);

~
*
*

Add a node to the graph that corresponds to a map key

that is a managed type with inheritance. This allows for
construction of multi-node entity graphs that include related
managed types. Subclass subgraphs will include the specified
attributes of superclass subgraphs

@param attributeName name of the attribute

@param type entity subclass

@return subgraph for the attribute

@throws I1legalArgumentException if the attribute is not an
attribute of this entity.

@throws I1legalArgumentException if the attribute's target
type is not a managed type

@throws I1legalStateException if this EntityGraph has been
statically defined

L R D R R S I

*/
<X> Subgraph<X> addKeySubgraph(String attributeName, Class<X> type);

/**

* Return the attribute nodes corresponding to the attributes of

427

* this managed type that are included in the graph.

* @return list of attribute nodes included in the graph or an
* empty list if none have been defined

*/

List<AttributeNode<?>> getAttributeNodes();

B.13. EntityGraph

/**

This type represents the root of an entity graph that will be
used as a template to define the attribute nodes and boundaries
of a graph of entities and entity relationships. The root must
be an entity type.

<p>

The methods to add subgraphs implicitly create the corresponding
attribute nodes as well; such attribute nodes should not be
redundantly specified.

@param <T> The type of the root entity.

@see AttributeNode
@see Subgraph
@see NamedEntityGraph

@see EntityManager#icreateEntityGraph(Class)

@see EntityManager#icreateEntityGraph(String)

@see EntityManager#igetEntityGraph(String)

@see EntityManagerFactory#faddNamedEntityGraph(String, EntityGraph)
@see EntityManager#find(EntityGraph, Object, FindOption...)

* 0% ok X kX 3k Xk Xk X X X X X X X X F X F

@since 2.1
*/
public interface EntityGraph<T> extends Graph<T> {

/**

* Return the name of a named {@code EntityGraph} (an entity

* graph defined by means of the {@link NamedEntityGraph}

* annotation, XML descriptor element, or added by means of the
* {@link EntityManagerFactory#addNamedEntityGraph} method).

* Returns null if the {@code EntityGraph} is not a named

* {@code EntityGraph}.

*/

String getName();

~
*
*

Add additional attributes to this entity graph that
correspond to attributes of subclasses of the entity type of
this {@code EntityGraph}. Subclass subgraphs automatically
include the specified attributes of superclass subgraphs.

@param type entity subclass

@return subgraph for the subclass

@throws I1legalArgumentException if the type is not an entity type
* @throws IllegalStateException if the EntityGraph has been

* statically defined

*/

<S extends T> Subgraph<S> addTreatedSubgraph(Class<S> type);

ECEEE T

/**

Add additional attributes to this entity graph that
correspond to attributes of subclasses of the entity type of
this {@code EntityGraph}. Subclass subgraphs automatically
include the specified attributes of superclass subgraphs.

* Xk X

428

@param type entity subclass

@return subgraph for the subclass

@throws I1legalArgumentException if the type is not an entity type

@throws I1legalStateException if the EntityGraph has been
statically defined

@deprecated use {@link #addTreatedSubgraph(Class)}

* 0% kX kX

*/
@Deprecated(since = "3.2", forRemoval = true)
<T> Subgraph<? extends T> addSubclassSubgraph(Class<? extends T> type);

B.14. Subgraph

/**
This type represents a subgraph for an attribute node that

corresponds to a managed type. Using this class, an entity
subgraph can be embedded within an {@link EntityGraph}.

@param <T> The type of the attribute.
@see EntityGraph

@see AttributeNode
@see NamedSubgraph

L T R T T R

@since 2.1
*/
public interface Subgraph<T> extends Graph<T> {

/**

* Return the type for which this subgraph was defined.
* @return managed type referenced by the subgraph

*/

(lass<T> getClassType();

B.15. AttributeNode

import java.util.Map;

/**

Represents an attribute node of an entity graph.

@param <T> The type of the attribute.

*

*

*

*

* @see EntityGraph
* @see Subgraph

* @see NamedAttributeNode

*

* @since 2.1

*/

public interface AttributeNode<T> {

/**

* Return the name of the attribute corresponding to the
* attribute node.

* @return name of the attribute

*/

String getAttributeName();

/**

429

Return a map of subgraphs associated with this attribute
node.

@return a {@link Map} of subgraphs associated with this
attribute node or an empty {@code Map} if none have been
defined

* % ¥ * *

*/
Map<Class, Subgraph> getSubgraphs();

* Return a map of subgraphs associated with this attribute
* node's map key.

* @return a {@link Map} of subgraphs associated with this
* attribute node's map key or an empty {@code Map} if none
* have been defined

*/
Map<Class, Subgraph> getKeySubgraphs();

B.16. SchemaManager

import java.util.Map;

/**

* Allows programmatic {@linkplain #create schema creation},
* {@linkplain #validate schema validation},

* {@linkplain #truncate data cleanup}, and

{@linkplain #drop schema cleanup} for entities belonging
to a certain persistence unit.

*

*

*

* <p>Properties are inherited from the {@link EntityManagerFactory},
* that is, they may be specified via {@code persistence.xml} or

* {@link PersistencefcreateEntityManagerFactory(String, Map)}.
*
*
*
*

@see EntityManagerFactory#fgetSchemaManager()

@since 3.2
*/
public interface SchemaManager {
/**
* (reate database objects mapped by entities belonging to the
* persistence unit.

<p>If a DDL operation fails, the behavior is undefined.
A provider may throw an exception, or it may ignore the problem
and continue.

L I

@param createSchemas if {@code true}, attempt to create schemas,
otherwise, assume the schemas already exist

*/

void create(boolean createSchemas);

/**
* Drop database objects mapped by entities belonging to the

persistence unit, undoing the effects of the
{@linkplain #create(boolean) previous creation}.

*
*
*
* <p>If a DDL operation fails, the behavior is undefined.

* A provider may throw an exception, or it may ignore the problem
* and continue.

*

*

*

@param dropSchemas if {@code true}, drop schemas,
otherwise, leave them be
*/
void drop(boolean dropSchemas);

430

~
*
*

Validate that the database objects mapped by entities belonging
to the persistence unit have the expected definitions.

<p>The persistence provider is not required to perform
any specific validation, so the semantics of this operation are
entirely provider-specific.

* 0% ok Xk X * X

@throws SchemaValidationException if a database object is missing or
* does not have the expected definition

*/

void validate() throws SchemaValidationException;

/**

Truncate the database tables mapped by entities belonging to
the persistence unit, and then re-import initial data from any
configured SQL scripts for data loading.

*
*
*
*
* <p>If a SQL operation fails, the behavior is undefined.

* A provider may throw an exception, or it may ignore the problem
* and continue.

*/

void truncate();

B.17. Persistence

package jakarta.persistence;

import java.util.list;

import java.util.Map;

import java.util.Set;

import java.util.HashSet;

import jakarta.persistence.spi.PersistenceProvider;

import jakarta.persistence.spi.PersistenceProviderResolver;
import jakarta.persistence.spi.PersistenceProviderResolverHolder;
import jakarta.persistence.spi.loadState;

/**
Bootstrap class used to obtain an {@link EntityManagerFactory}

in Java SE environments. It may also be used to cause schema
generation to occur.

<p>The {@code Persistence} class is available in a Jakarta EE
container environment as well; however, support for the Java SE
bootstrapping APIs is not required in container environments.

<p>The {@code Persistence} class is used to obtain a {@link
PersistenceUtil PersistenceUtil} instance in both Jakarta EE
and Java SE environments.

0% ok Xk Xk Xk X X X %

@since 1.0
*/
public class Persistence {

/**
* Default constructor.
* @deprecated This class is not intended to be extended nor instantiated,
* it is going to be marked {@code final} when this constructor becomes hidden.
*/
@eprecated(since = "3.2", forRemoval = true)
public Persistence() {
//kept for backward compatibility with pre-3.2 versions
}

431

432

/**

Create and return an {@link EntityManagerFactory} for the named
persistence unit.

@param persistenceUnitName the name of the persistence unit
@return the factory that creates {@link EntityManager}s confiqured
according to the specified persistence unit

* X F kO F

*
/
public static EntityManagerFactory createEntityManagerFactory(String persistenceUnitName) {
return createEntityManagerFactory(persistenceUnitName, null);

}

/**

Create and return an {@link EntityManagerFactory} for the named
persistence unit, using the given properties.

*
*
*
* @param persistenceUnitName the name of the persistence unit

* @param properties additional properties to use when creating the

* factory. These properties may include properties

* to control schema generation. The values of these

* properties override any values that may have been

* configured elsewhere.

* @return the factory that creates {@link EntityManager}s configured

* according to the specified persistence unit

*/

public static EntityManagerFactory createEntityManagerFactory(String persistenceUnitName, Map<?,?> properties)

EntityManagerFactory emf = null;
PersistenceProviderResolver resolver = PersistenceProviderResolverHolder.getPersistenceProviderResolver();

List<PersistenceProvider> providers = resolver.getPersistenceProviders();

for (PersistenceProvider provider : providers) {
emf = provider.createEntityManagerFactory(persistenceUnitName, properties);
if (emf !'= null) {
break;
}
}
if (emf == null) {
throw new PersistenceException("No Persistence provider for EntityManager named " +
persistenceUnitName);
}
return emf;

}

/**
Create and return an {@link EntityManagerFactory} for the named
persistence unit, using the given properties.

*
*
*
* @param configuration configuration of the persistence unit

* @return the factory that creates {@link EntityManager}s configured
* according to the specified persistence unit

*

*

@since 3.2
*/
public static EntityManagerFactory createEntityManagerFactory(PersistenceConfiguration configuration) {

EntityManagerFactory emf = null;
PersistenceProviderResolver resolver = PersistenceProviderResolverHolder.getPersistenceProviderResolver();

List<PersistenceProvider> providers = resolver.getPersistenceProviders();

for (PersistenceProvider provider : providers) {
emf = provider.createEntityManagerFactory(configuration);
if (emf !'= null) {
break;

}
}
if (emf == null) {

throw new PersistenceException("No Persistence provider for EntityManager named " + configuration.name

¥
}

return emf;

/**
Create database schemas and/or tables and/or create DDL scripts
as determined by the supplied properties.
<p>
Called when schema generation is to occur as a separate phase
from creation of the entity manager factory.
<p>
@param persistenceUnitName the name of the persistence unit
@param map properties for schema generation; these may also
contain provider-specific properties. The values
of these properties override any values that may
have been configured elsewhere.
@throws PersistenceException if insufficient or inconsistent
configuration information is provided or if schema
generation otherwise fails.

* ok kX X X X X X X X X X F

* *

@since 2.1
*/
public static void generateSchema(String persistenceUnitName, Map<?,?> map) {

PersistenceProviderResolver resolver = PersistenceProviderResolverHolder.getPersistenceProviderResolver();

List<PersistenceProvider> providers = resolver.getPersistenceProviders();

for (PersistenceProvider provider : providers) {
if (provider.generateSchema(persistenceUnitName, map)) {
return;
}
}

throw new PersistenceException("No Persistence provider to generate schema named " + persistenceUnitName);

/**

* Return the {@link PersistenceUtil} instance

* @return {@link PersistenceUtil} instance

* @since 2.0

*/

public static PersistenceUtil getPersistenceltil() {
return new PersistenceUtilImpl();

}

/**
* Implementation of the {@link PersistenceUtil} interface
* @since 2.0
*/
private static class PersistenceUtilImpl implements PersistenceUtil {
public boolean isLoaded(Object entity, String attributeName) {
PersistenceProviderResolver resolver = PersistenceProviderResolverHolder.
getPersistenceProviderResolver();

List<PersistenceProvider> providers = resolver.getPersistenceProviders();

for (PersistenceProvider provider : providers) {

LoadState loadstate = provider.getProviderUtil().isLoadedWithoutReference(entity, attributeName);

if(loadstate == LoadState.LOADED) {
return true;

433

} else if (loadstate == LoadState.NOT_LOADED) {
return false;
} // else continue

}

//None of the providers could determine the load state try isLoadedWithReference
for (PersistenceProvider provider : providers) {
LoadState loadstate = provider.getProviderUtil().isLoadedWithReference(entity, attributeName);
if(loadstate == LoadState.LOADED) {
return true;
} else if (loadstate == LoadState.NOT_LOADED) {
return false;
} // else continue

}

//None of the providers could determine the load state.
return true;

}

public boolean isLoaded(Object entity) {
PersistenceProviderResolver resolver = PersistenceProviderResolverHolder.

getPersistenceProviderResolver();

List<PersistenceProvider> providers = resolver.getPersistenceProviders();

for (PersistenceProvider provider : providers) {
LoadState loadstate = provider.getProviderUtil().isLoaded(entity);
if(loadstate == LoadState.LOADED) {
return true;
} else if (loadstate == LoadState.NOT_LOADED) {
return false;
} // else continue
}
//None of the providers could determine the load state
return true;

/**
This final String is deprecated and should be removed and is only here for TCK backward compatibility

@since 1.0
@deprecated

* F F X X

TODO: Either change TCK reference to PERSISTENCE_PROVIDER field to expect
"jakarta.persistence.spi.PersistenceProvider" or remove PERSISTENCE_PROVIDER field and also update TCK

*

signature

* tests.

*/

@Deprecated(since = "3.2", forRemoval = true)

public static final String PERSISTENCE_PROVIDER = "jakarta.persistence.spi.PersistenceProvider";

/**

* This instance variable is deprecated and should be removed and is only here for TCK backward compatibility
* @since 1.0

* @deprecated

*/

@Deprecated(since = "3.2", forRemoval = true)

protected static final Set<PersistenceProvider> providers = new HashSet<PersistenceProvider>();

B.18. PersistenceConfiguration

434

import java.util.HashMap;
import java.util.List;
import java.util.Map;

import java.util.Objects;

/**

Represents a configuration of a persistence unit, allowing programmatic
creation of an {@link EntityManagerFactory}. The configuration options
available via this API reflect the similarly-named elements of the
{@code persistence.xml} file.

<p>This API may not be used to configure a container-managed persistence
unit. That is, the configured persistence unit should be considered a
Java SE persistence unit, even when this API is used within the Jakarta
EE environment.

<p>If injection of the {@link EntityManagerFactory} is required, a CDI
{@code Producer} may be used to make the {@link EntityManagerFactory}
available as a CDI managed bean.

{@snippet :

@Produces @ApplicationScoped @Documents

EntityManagerFactory configure() {

return new PersistenceConfiguration()

.name("DocumentData")
.nonJtaDataSource("java:global/jdbc/DocumentDatabase")
.managed(lass(Document.class)
.createEntityManagerFactory();

}

}

<p>Similarly, if injection of an {@link EntityManager} is required,
a (DI {@code Producer} method/{@code Disposer} method pair may be
used to make the {@link EntityManager} available as a CDI managed
bean.

{@snippet :

@Produces @TransactionScoped @Documents

EntityManager create(@Documents EntityManagerFactory factory) {
return factory.createEntityManager();

}

void close(@Disposes @ocuments EntityManager entityManager) {
entityManager.close();

}

}

<p>It is intended that persistence providers define subclasses of
this class with vendor-specific configuration options. A provider
must support configuration via any instance of this class or of any
subclass of this class.

@see PersistenceficreateEntityManagerFactory(PersistenceConfiguration)

0%k Kk 3k Kk 3k k 3k Kk 3k ok 3k kX kX kX kX kX kX kX kX kX kX kX kX kX 3k Xk X 3k X F X * X

@since 3.2
*/
public class PersistenceConfiguration {

/**

* Fully qualified name of the JDBC driver class.

*/

public static final String JDBC_DRIVER = "jakarta.persistence.jdbc.driver";
/**

* JDBC URL.

*/

public static final String JDBC_URL = "jakarta.persistence.jdbc.url";
/**

* Username for JDBC authentication.

*/

public static final String JDBC_USER = "jakarta.persistence.jdbc.user";

435

/**
* Password for JDBC authentication.

*/

public static final String JDBC_PASSWORD = "jakarta.persistence.jdbc.password";
/**

* An instance of {@code javax.sql.DataSource}.

*/

public static final String JDBC_DATASOURCE = "jakarta.persistence.dataSource";

*%

/* Default pessimistic lock timeout hint.

*

puglic static final String LOCK_TIMEQUT = "jakarta.persistence.lock.timeout";
**
/* Default query timeout hint.

*

puglic static final String QUERY_TIMEOUT = "jakarta.persistence.query.timeout";

/**

* The action to be performed against the database.

*

* <p>Standard actions are: {@code none}, {@code create},

* {@code drop}, {@code drop-and-create}, {@code validate}.

*/

public static final String SCHEMAGEN_DATABASE_ACTION = "jakarta.persistence.schema-generation.database.action";

/**

* The action to be generated as a SQL script.

<p>The script is generated in the location specified by
{@value #SCHEMAGEN_CREATE_TARGET} or {@value #SCHEMAGEN_DROP_TARGET}.

* Xk

*

* <p>Standard actions are: {@code none}, {@code create},

* {@code drop}, {@code drop-and-create}.

*/

public static final String SCHEMAGEN_SCRIPTS_ACTION = "jakarta.persistence.schema-generation.scripts.action";
/**

* The source of artifacts to be created.

*

* <p>Standard sources are: {@code metadata}, {@code script},

* {@code metadata-then-script}, {@code script-then-metadata}.

*

* <p>The location of the script source is specified by

* {@value #SCHEMAGEN_CREATE_SCRIPT_SOURCE}.

*/

public static final String SCHEMAGEN_CREATE_SOURCE = "jakarta.persistence.schema-generation.create-source";

/'k*

* The source of artifacts to be dropped.

*

* <p>Standard sources are: {@code metadata}, {@code script},

* {@code metadata-then-script}, {@code script-then-metadata}.

*

* <p>The location of the script source is specified by

* {@value #SCHEMAGEN_DROP_SCRIPT_SOURCE}.

*/

public static final String SCHEMAGEN_DROP_SOURCE = "jakarta.persistence.schema-generation.drop-source";
/**

* An application-provided SQL script to be executed when the

* schema is created.

*/

public static final String SCHEMAGEN_CREATE_SCRIPT_SOURCE = "jakarta.persistence.schema-generation.create-

script-source”;

/**

* An application-provided SQL script to be executed when the

* schema is dropped.

*/

public static final String SCHEMAGEN_DROP_SCRIPT_SOURCE = "jakarta.persistence.schema-generation.drop-script-

source";

436

/**

* The provider-generated SQL script which creates the schema

* when {@value SCHEMAGEN_SCRIPTS_ACTION} is set.

*/

public static final String SCHEMAGEN_CREATE_TARGET = "jakarta.persistence.schema-generation.create-target";
/**

* The provider-generated SQL script which drops the schema

* when {@value SCHEMAGEN_SCRIPTS_ACTION} is set.

*/

public static final String SCHEMAGEN_DROP_TARGET = "jakarta.persistence.schema-generation.drop-target";

/‘k*

* An instance of {@code jakarta.validation.ValidatorFactory},

*

puglic static final String VALIDATION_FACTORY = "jakarta.persistence.validation.factory";

**

/* Target groups for validation at {@link PrePersist}.

*

puglic static final String VALIDATION_GROUP_PRE_PERSIST = "jakarta.persistence.validation.group.pre-persist";
**

/* Target groups for validation at {@link PreUpdate}.
*

puglic static final String VALIDATION_GROUP_PRE_UPDATE
**

/* Target groups for validation at {@link PreRemove}.
*

puglic static final String VALIDATION_GROUP_PRE_REMOVE

"jakarta.persistence.validation.group.pre-update";

"jakarta.persistence.validation.group.pre-remove";

/**

String specifying a {@link SharedCacheMode}.

*
*
* <p>Defined for use with

* {@link PersistenceffcreateEntityManagerFactory(String, Map)}.

* (lients of this {@code PersistenceConfiguration} class

* should use {@link #sharedCacheMode(SharedCacheMode)}.

*/

public static final String CACHE_MODE = "jakarta.persistence.sharedCache.mode";

private final String name;

private String provider;
private String jtaDataSource;
private String nonJtaDataSource;

private SharedCacheMode sharedCacheMode = SharedCacheMode.UNSPECIFIED;
private ValidationMode validationMode = ValidationMode.AUTO;
private PersistenceUnitTransactionType transactionType = PersistenceUnitTransactionType.RESOURCE_LOCAL;

private final List<Class<?>> managedClasses = new ArraylList<>();
private final List<String> mappingFileNames = new ArraylList<>();
private final Map<String,Object> properties = new HashMap<>();

/**

* Create a new empty configuration. An empty configuration does not

* typically hold enough information for successful invocation of

* {@link #createEntityManagerFactory()}.

*

* @param name the name of the persistence unit, which may be used by

* the persistence provider for logging and error reporting

*/

public PersistenceConfiguration(String name) {
Objects.requireNonNull(name, "Persistence unit name should not be null");
this.name = name;

}

/**
* Create a new {@link EntityManagerFactory} based on this configuration.

437

* @throws PersistenceException if required configuration is missing or
* if the factory could not be created
*/
public EntityManagerFactory createEntityManagerFactory() {
return Persistence.createEntityManagerFactory(this);

}

/**
* The name of the persistence unit, which may be used by the persistence
* provider for logging and error reporting.
* @return the name of the persistence unit.
*/
public String name() {
return name;

}

/**

* Specify the persistence provider.

* @param providerClassName the qualified name of the persistence provider class

* @return this configuration

*/

public PersistenceConfiguration provider(String providerClassName) {
this.provider = providerClassName;
return this;

}

/**

* The fully-qualified name of a concrete class implementing

* {@link jakarta.persistence.spi.PersistenceProvider}.

* @return the qualified name of the persistence provider class.
*

/
public String provider() {

return provider;

}

/**

* Specify the INDI name of a JTA {@code javax.sql.DataSource}.

* @param dataSourceJndiName the INDI name of a JTA datasource

* @return this configuration

*/

public PersistenceConfiguration jtaDataSource(String dataSourceJndiName) {
this.jtaDataSource = dataSourceJndiName;
return this;

}

/'k*
* The JINDI name of a JTA {@code javax.sql.DataSource}.
* @return the configured JTA datasource, if any, or null
*/
public String jtaDataSource() {
return jtaDataSource;

}

/**

* Specify the INDI name of a non-JTA {@code javax.sql.DataSource}.

* @param dataSourceJIndiName the JINDI name of a non-JTA datasource

* @return this configuration

*/

public PersistenceConfiguration nonJtaDataSource(String dataSourcelndiName) {
this.nonJtaDataSource = dataSourcelndiName;
return this;

}

/**

* The JINDI name of a non-JTA {@code javax.sql.DataSource}.
* @return the configured non-JTA datasource, if any, or null
*

/

438

public String nonJtaDataSource() {
return nonJtaDataSource;

}

/**

* Add a managed class (an {@link Entity}, {@link Embeddable},

* {@link MappedSuperclass}, or {@link Converter}) to the

* confiquration.

* @param managed(Class the managed class

* @return this configuration

*/

public PersistenceConfiguration managedClass(Class<?> managedClass) {
managedClasses.add(managed(lass);
return this;

}

/**
* The configured managed classes, that is, a list of classes
* annotated {@link Entity}, {@link Embeddable},
* {@link MappedSuperclass}, or {@link Converter}.
* @return all configured managed classes
*/
public List<Class<?>> managedClasses() {
return managedClasses;

}

/'k*

* Add the path of an XML mapping file loaded as a resource to

* the confiquration.

* @param name the resource path of the mapping file

* @return this configuration

*/

public PersistenceConfiguration mappingFile(String name) {
mappingFileNames.add(name);
return this;

}

/**
* The configured resource paths of XML mapping files.
* @return all configured mapping file resource paths
*/
public List<String> mappingFiles() {

return mappingFileNames;

}

/'k*

* Specify the transaction type for the persistence unit.

* @param transactionType the transaction type

* @return this configuration

*/

public PersistenceConfiguration transactionType(PersistenceUnitTransactionType transactionType) {
this.transactionType = transactionType;
return this;

/**

The {@linkplain PersistenceUnitTransactionType transaction type}.

<1i>If {@link PersistenceUnitTransactionType#ITA}, a JTA data
source must be provided via {@link #jtaDataSource()},
or by the container.

If {@link PersistenceUnitTransactionType#RESOURCE_LOCAL},
database connection properties may be specified via
{@link #properties()}, or a non-JTA datasource may be
provided via {@link #nonJtaDataSource()}.

@return the transaction type

ECE T R R B R R

439

*/
public PersistenceUnitTransactionType transactionType() {
return transactionType;

}

/**

* Specify the shared cache mode for the persistence unit.

* @param sharedCacheMode the shared cache mode

* @return this configuration

*/

public PersistenceConfiguration sharedCacheMode(SharedCacheMode sharedCacheMode) {
this.sharedCacheMode = sharedCacheMode;
return this;

}

/‘k*

* The shared cache mode. The default behavior is unspecified
* and {@linkplain SharedCacheMode#UNSPECIFIED provider-specific}.
* @return the shared cache mode
*/
public SharedCacheMode sharedCacheMode() {
return sharedCacheMode;

}

/**

* Specify the validation mode for the persistence unit.

* @param validationMode the shared cache mode

* @return this configuration

*/

public PersistenceConfiguration validationMode(ValidationMode validationMode) {
this.validationMode = validationMode;
return this;

}

/‘k*

* The validation mode, {@link ValidationMode#AUTO} by default.
* @return the validation mode
*/
public ValidationMode validationMode() {
return validationMode;

}

/**

* Set a property of this persistence unit.

* @param name the property name

* @param value the property value

* @return this configuration

*/

public PersistenceConfiguration property(String name, Object value) {
properties.put(name, value);
return this;

}

/**

* Set multiple properties of this persistence unit.

* @param properties the properties

* @return this configuration

*/

public PersistenceConfiguration properties(Map<String,?> properties) {
this.properties.putAll(properties);
return this;

}

/**
* Standard and vendor-specific property settings.
* @return the configured properties
*
/

440

public Map<String, Object> properties() {
return properties;

}

B.19. Persistenceltil

package jakarta.persistence;

/**

Utility interface between the application and the persistence
provider(s).

*

*

*

* <p>The {@code PersistenceUtil} interface instance obtained from

* the {@link Persistence} class is used to determine the load state
* of an entity or entity attribute regardless of which persistence
* provider in the environment created the entity.

*

*

@since 2.0
*/
public interface PersistenceUtil {

/**

* Determine the load state of a given persistent attribute.

* @param entity entity containing the attribute

* @param attributeName name of attribute whose load state is
* to be determined

* @return false if entity's state has not been loaded or if

* the attribute state has not been loaded, else true

*/

boolean isLoaded(Object entity, String attributeName);

/**

* Determine the load state of an entity.

* This method can be used to determine the load state of an

* entity passed as a reference. An entity is considered loaded
* if all attributes for which {@link FetchType#EAGER} has been
* specified have been loaded.

* <p>The {@link #isLoaded(Object, String)} method should be

* used to determine the load state of an attribute. Not doing
* so might lead to unintended loading of state.

* @param entity whose load state is to be determined

*

@return false if the entity has not been loaded, else true
*/
boolean isLoaded(Object entity);

B.20. PersistenceUnitUtil

package jakarta.persistence;

import jakarta.persistence.metamodel.Attribute;

Utility interface between the application and the persistence
provider managing the persistence unit.

entity instances obtained from or managed by entity managers

*
*
*
* <p>The methods of this interface should only be invoked on
*
* for this persistence unit or on new entity instances.

*

*

@since 2.0

441

public interface PersistenceUnitUtil extends Persistenceltil {

/**

* Determine the load state of a given persistent attribute

* of an entity belonging to the persistence unit.

* @param entity entity instance containing the attribute

* @param attributeName name of attribute whose load state is

* to be determined

* @return false if entity's state has not been loaded or if
* the attribute state has not been loaded, else true
*/

boolean isLoaded(Object entity, String attributeName);

/**

* Determine the load state of a given persistent attribute

* of an entity belonging to the persistence unit.

* @param entity entity instance containing the attribute

* @param attribute attribute whose load state is to be determined
* @return false if entity's state has not been loaded or if

* the attribute state has not been loaded, else true
* @since 3.2
*/

<E> boolean islLoaded(E entity, Attribute<? super E, ?> attribute);

~
*
*

Determine the load state of an entity belonging to the

persistence unit. This method can be used to determine the

load state of an entity passed as a reference. An entity is
considered loaded if all attributes for which

{@link FetchType#EAGER} has been specified have been loaded.

<p> The {@link #islLoaded(Object, String)} method should be

used to determine the load state of an attribute. Not doing

so might lead to unintended loading of state.

@param entity entity instance whose load state is to be determined
@return false if the entity has not been loaded, else true

L S T R

*/
boolean islLoaded(Object entity);

~
*
*

Load the persistent value of a given persistent attribute

of an entity belonging to the persistence unit and to an

open persistence context.

After this method returns, {@link #isLoaded(Object,String)}
must return true with the given entity instance and attribute.
@param entity entity instance

@param attributeName the name of the attribute to be loaded
@throws I1llegalArgumentException if the given object is not an
instance of an entity class belonging to the persistence unit
@throws PersistenceException if the entity is not associated
with an open persistence context or cannot be loaded from the
database

@since 3.2

L R TR I R R

*/
void load(Object entity, String attributeName);

~
*
*

Load the persistent value of a given persistent attribute

of an entity belonging to the persistence unit and to an

open persistence context.

After this method returns, {@link #isLoaded(Object,Attribute)}
must return true with the given entity instance and attribute.
@param entity entity instance to be loaded

@param attribute the attribute to be loaded

@throws I1legalArgumentException if the given object is not an
instance of an entity class belonging to the persistence unit
@throws PersistenceException if the entity is not associated
with an open persistence context or cannot be loaded from the

EE I R N R R R R

442

* database

* @since 3.2

*/

<E> void load(E entity, Attribute<? super E, ?> attribute);

/'k*

* Load the persistent state of an entity belonging to the

* persistence unit and to an open persistence context.

* After this method returns, {@link #isLoaded(Object)} must

* return true with the given entity instance.

* @param entity entity instance to be loaded

* @throws IllegalArgumentException if the given object is not an
* instance of an entity class belonging to the persistence unit
* @throws PersistenceException if the entity is not associated
* with an open persistence context or cannot be loaded from the
* database

* @since 3.2

*/

void load(Object entity);

/**

* Return true if the given entity belonging to the persistence

* unit and to an open persistence context is an instance of the
* given entity class, or false otherwise. This method may, but

* is not required to, load the given entity by side effect.

* @param entity entity instance

* @param entityClass an entity class belonging to the persistence
* unit

* @throws IllegalArgumentException if the given object is not an
* instance of an entity class belonging to the persistence unit
* or if the given class is not an entity class belonging to the
* persistence unit

* @throws PersistenceException if the entity is not associated
* with an open persistence context or cannot be loaded from the
* database

*

@since 3.2
*/
boolean isInstance(Object entity, Class<?> entityClass);

~
*
*

Return the concrete entity class if the given entity belonging
to the persistence unit and to an open persistence context.
This method may, but is not required to, load the given entity
by side effect.

@param entity entity instance

@return an entity class belonging to the persistence unit
@throws I1llegalArgumentException if the given object is not an
instance of an entity class belonging to the persistence unit
@throws PersistenceException if the entity is not associated
with an open persistence context or cannot be loaded from the
database

@since 3.2

L N R I I N I

*/
<T> (lass<? extends T> getClass(T entity);

~
*
*

Return the id of the entity.

A generated id is not guaranteed to be available until after

the database insert has occurred.

Returns null if the entity does not yet have an id.

@param entity entity instance

@return id of the entity

@throws I1legalArgumentException if the object is found not
to be an entity

* 0% ok Xk Xk X

*/
Object getIdentifier(Object entity);

443

444

~
*
*

Return the version of the entity.
A generated version is not guaranteed to be available until after
the database insert has occurred.
Returns null if the entity does not yet have an id.
@param entity entity instance
@return id of the entity
@throws I1legalArgumentException if the object is found not
to be an entity
@since 3.2

ECE I T

*/
Object getVersion(Object entity);

Appendix C: Criteria API Interfaces

The following APIs are defined in the package jakarta.persistence.criteria.

C.1.CriteriaBuilder

package jakarta.persistence.criteria;

import java.math.BigDecimal;

import java.math.BigInteger;

import java.time.temporal.Temporal;
import java.util.Collection;

import java.util.List;

import java.util.Map;

import java.util.Set;

import jakarta.persistence.Tuple;

/‘k*

Used to construct criteria queries, compound selections,
expressions, predicates, orderings.

*

*

*

* <p> Note that {@link Predicate} is used instead of

* {@code Expression<Boolean>} in this API in

* order to work around the fact that Java generics are not
* compatible with varags.

*
*

@since 2.0
*/
public interface CriteriaBuilder {

/**

* Create a {@link CriteriaQuery} object.
* @return criteria query object

*/

CriteriaQuery<Object> createQuery();

/**

* Create a {@link CriteriaQuery} object with the given
* result type.

* @param resultClass type of the query result

* @return criteria query object

*/

<T> CriteriaQuery<T> createQuery(Class<T> resultClass);

/**

* Create a {@link CriteriaQuery} object that returns a
* tuple of objects as its result.

* @return criteria query object

*/

CriteriaQuery<Tuple> createTupleQuery();

// methods to construct queries for bulk updates and deletes:

* Create a {@link CriteriaUpdate} query object to perform a

* bulk update operation.

* @param targetEntity target type for update operation

* @return the query object

* @since 2.1

*/

<T> Criterialpdate<T> createCriterialpdate(Class<T> targetEntity);

/**
* (Create a {@link CriteriaDelete} query object to perform a

445

446

bulk delete operation.

@param targetEntity target type for delete operation
@return the query object

@since 2.1

* % kX

*/
<T> CriteriaDelete<T> createCriteriaDelete(Class<T> targetEntity);

// selection construction methods:

~
*
*

Create a selection item corresponding to a constructor.
This method is used to specify a constructor that is
applied to the results of the query execution. If the
constructor is for an entity class, the resulting entities
will be in the new state after the query is executed.
@param resultClass class whose instance is to be constructed
@param selections arguments to the constructor
@return compound selection item
@throws I1legalArgumentException if an argument is a

tuple- or array-valued selection item

ECE I T T I S

*/

<Y> CompoundSelection<Y> construct(Class<Y> resultClass, Selection<?>...

/'k*

* Create a tuple-valued selection item.

* @param selections selection items

* @return tuple-valued compound selection

* @throws IllegalArgumentException if an argument is a

* tuple- or array-valued selection item

*/

CompoundSelection<Tuple> tuple(Selection<?>... selections);

* Create a tuple-valued selection item.

* @param selections 1list of selection items

* @return tuple-valued compound selection

* @throws IllegalArgumentException if an argument is a

* tuple- or array-valued selection item

* @since 3.2

*/

CompoundSelection<Tuple> tuple(List<Selection<?>> selections);

/'k*

* Create an array-valued selection item.

* @param selections selection items

* @return array-valued compound selection

* @throws IllegalArgumentException if an argument is a

* tuple- or array-valued selection item

*/

CompoundSelection<Object[]> array(Selection<?>... selections);

/**

* (Create an array-valued selection item.

* @param selections 1list of selection items

@return array-valued compound selection

@throws I1legalArgumentException if an argument is a
tuple- or array-valued selection item

@since 3.2

* % * X

*/
CompoundSelection<Object[]> array(List<Selection<?>> selections);

//ordering:

/**

* Create an ordering by the ascending value of the expression.

selections);

* @param expression expression used to define the ordering
* @return ascending ordering corresponding to the expression
*/
Order asc(Expression<?> expression);

/**

* (Create an ordering by the descending value of the expression.
* @param expression expression used to define the ordering

* @return descending ordering corresponding to the expression
*/
Order desc(Expression<?> expression);

/**

* Create an ordering by the ascending value of the expression.
* @param expression expression used to define the ordering
* @param nullPrecedence the precedence of null values
* @return ascending ordering corresponding to the expression
* @since 3.2
*/
Order asc(Expression<?> expression, Nulls nullPrecedence);

/**

Create an ordering by the descending value of the expression.
@param expression expression used to define the ordering
@param nullPrecedence the precedence of null values

@return descending ordering corresponding to the expression
@since 3.2

EE I T

*/
Order desc(Expression<?> expression, Nulls nullPrecedence);

//aggregate functions:

/**

* (Create an aggregate expression applying the avg operation.

* @param x expression representing input value to avg operation
* @return avg expression

*/

<N extends Number> Expression<Double> avg(Expression<N> x);

/**

* Create an aggregate expression applying the sum operation.

* @param x expression representing input value to sum operation
* @return sum expression

*/

<N extends Number> Expression<N> sum(Expression<N> x);

/**

* Create an aggregate expression applying the sum operation to an
* Integer-valued expression, returning a Long result.

* @param x expression representing input value to sum operation
* @return sum expression

*/

Expression<Long> sumAsLong(Expression<Integer> x);

/**

* Create an aggregate expression applying the sum operation to a
* Float-valued expression, returning a Double result.

* @param x expression representing input value to sum operation
* @return sum expression

*/

Expression<Double> sumAsDouble(Expression<Float> x);

/**

* Create an aggregate expression applying the numerical max
* operation.
* @param x expression representing input value to max operation

447

* @return max expression
*/
<N extends Number> Expression<N> max(Expression<N> x);

/**

* Create an aggregate expression applying the numerical min

* operation.

* @param x expression representing input value to min operation
* @return min expression

*/

<N extends Number> Expression<N> min(Expression<N> x);

/**

* Create an aggregate expression for finding the greatest of

* the values (strings, dates, etc).

* @param x expression representing input value to greatest

* operation

* @return greatest expression

*/

<X extends Comparable<? super X>> Expression<X> greatest(Expression<X> x);

/**

* (Create an aggregate expression for finding the least of

* the values (strings, dates, etc).

* @param x expression representing input value to least

* operation

* @return least expression

*/

<X extends Comparable<? super X>> Expression<X> least(Expression<X> x);

/**
* (Create an aggregate expression applying the count operation.
* @param x expression representing input value to count
operation
* @return count expression
*/
Expression<Long> count(Expression<?> x);

/**

* Create an aggregate expression applying the count distinct
* operation.

* @param x expression representing input value to

* count distinct operation

* @return count distinct expression

*/

Expression<Long> countDistinct(Expression<?> x);

//subqueries:

/**

* (Create a predicate testing the existence of a subquery result.
* @param subquery subquery whose result is to be tested

* @return exists predicate

*/

Predicate exists(Subquery<?> subquery);

/**

* (Create an all expression over the subquery results.
* @param subquery subquery

* @return all expression

*/

<Y> Expression<Y> all(Subquery<Y> subquery);

/**

* Create a some expression over the subquery results.

448

* This expression is equivalent to an {@code any} expression.
* @param subquery subquery

* @return some expression

*/

<Y> Expression<Y> some(Subquery<Y> subquery);

/**

* Create an any expression over the subquery results.

* This expression is equivalent to a {@code some} expression.
* @param subquery subquery

* @return any expression

*/
<Y> Expression<Y> any(Subquery<Y> subquery);

//boolean functions:

/**

* Create a conjunction of the given boolean expressions.

* @param x boolean expression

* @param y boolean expression

* @return and predicate

*/

Predicate and(Expression<Boolean> x, Expression<Boolean> y);

/**

* Create a conjunction of the given restriction predicates.
* A conjunction of zero predicates is true.

* @param restrictions zero or more restriction predicates
* @return and predicate

*/

Predicate and(Predicate... restrictions);

* Create a conjunction of the given restriction predicates.

* A conjunction of zero predicates is true.

* @param restrictions a list of zero or more restriction predicates
* @return and predicate

* @since 3.2

*/

Predicate and(List<Predicate> restrictions);

/**

* Create a disjunction of the given boolean expressions.

* @param x boolean expression

* @param y boolean expression

* @return or predicate

*/

Predicate or(Expression<Boolean> x, Expression<Boolean> y);

/**

* Create a disjunction of the given restriction predicates.
* A disjunction of zero predicates is false.

* @param restrictions zero or more restriction predicates
* @return or predicate

*/

Predicate or(Predicate... restrictions);

* Create a disjunction of the given restriction predicates.

* A disjunction of zero predicates is false.

* @param restrictions a list of zero or more restriction predicates
* @return or predicate

* @since 3.2

*/

Predicate or(List<Predicate> restrictions);

449

450

/**

* Create a negation of the given restriction.
* @param restriction restriction expression

* @return not predicate
*/

Predicate not(Expression<Boolean> restriction);

/'k*

* Create a conjunction (with zero conjuncts).
* A conjunction with zero conjuncts is true.

* @return and predicate
*/
Predicate conjunction();

/**

* Create a disjunction (with zero disjuncts).
* A disjunction with zero disjuncts is false.

* @return or predicate
*/
Predicate disjunction();

//turn Expression<Boolean> into a Predicate

//useful for use with varargs methods

/**

* (Create a predicate testing for a true value.

* @param x expression to be tested

* @return predicate

*/

Predicate isTrue(Expression<Boolean> x);

/**

* Create a predicate testing for a false
* @param x expression to be tested

* @return predicate

*/

Predicate isFalse(Expression<Boolean> x);

//null tests:

/**

* Create a predicate to test whether the
* @param X expression

* @return is-null predicate

*/

Predicate isNull(Expression<?> x);

/**

* Create a predicate to test whether the
* @param x expression

* @return is-not-null predicate

*/

Predicate isNotNull(Expression<?> x);

//equality:

/**

value.

expression is null.

expression is not null.

* Create a predicate for testing the arguments for equality.

* @param x expression

* @param y expression

* @return equality predicate
*/

Predicate equal(Expression<?> x, Expression<?> y);

/**

* (Create a predicate for testing the arguments for equality.
* @param x expression

* @param y object

* @return equality predicate

*/

Predicate equal(Expression<?> x, Object y);

/'k*

* Create a predicate for testing the arguments for inequality.
* @param x expression

* @param y expression

* @return inequality predicate

*/

Predicate notEqual(Expression<?> x, Expression<?> y);

/*'k

* Create a predicate for testing the arguments for inequality.
* @param x expression

* @param y object

* @return inequality predicate

*/

Predicate notEqual(Expression<?> x, Object y);

//comparisons for generic (non-numeric) operands:

/'k*

* (Create a predicate for testing whether the first argument is

* greater than the second.

* @param X expression

* @param y expression

* @return greater-than predicate

*/

<Y extends Comparable<? super Y>> Predicate greaterThan(Expression<? extends Y> x, Expression<? extends Y> y);

/**

* Create a predicate for testing whether the first argument is

* greater than the second.

* @param x expression

* @param y value

* @return greater-than predicate

*/

<Y extends Comparable<? super Y>> Predicate greaterThan(Expression<? extends Y> x, Y y);

* Create a predicate for testing whether the first argument is

* greater than or equal to the second.

* @param x expression

* @param y expression

* @return greater-than-or-equal predicate

*/

<Y extends Comparable<? super Y>> Predicate greaterThanOrEqualTo(Expression<? extends Y> x, Expression<?
extends Y> y);

* (Create a predicate for testing whether the first argument is

* greater than or equal to the second.

* @param x expression

* @param y value

* @return greater-than-or-equal predicate

*/

<Y extends Comparable<? super Y>> Predicate greaterThanOrEqualTo(Expression<? extends Y> x, Y y);
/**

* Create a predicate for testing whether the first argument is

* less than the second.
* @param x expression

451

452

* @param y expression

* @return less-than predicate

*/

<Y extends Comparable<? super Y>> Predicate lessThan(Expression<? extends Y> x, Expression<? extends Y> y);

/**

* (Create a predicate for testing whether the first argument is

* less than the second.

* @param X expression

* @param y value

* @return less-than predicate

*/

<Y extends Comparable<? super Y>> Predicate lessThan(Expression<? extends Y> x, Y y);

* Create a predicate for testing whether the first argument is

* less than or equal to the second.

* @param x expression

* @param y expression

* @return less-than-or-equal predicate

*/

<Y extends Comparable<? super Y>> Predicate lessThanOrEqualTo(Expression<? extends Y> x, Expression<? extends

Y>y);

/**

* (Create a predicate for testing whether the first argument is

* less than or equal to the second.

* @param X expression

* @param y value

* @return less-than-or-equal predicate

*/

<Y extends Comparable<? super Y>> Predicate lessThanOrEqualTo(Expression<? extends Y> x, Y y);

/**

* Create a predicate for testing whether the first argument is
* between the second and third arguments in value.

* @param v expression

* @param x expression

* @param y expression

*

@return between predicate
*/
<Y extends Comparable<? super Y>> Predicate between(Expression<? extends Y> v, Expression<? extends Y> x,

Expression<? extends Y> y);

/**

* Create a predicate for testing whether the first argument is

* between the second and third arguments in value.

* @param v expression

* @param x value

* @param y value

* @return between predicate

*/

<Y extends Comparable<? super Y>> Predicate between(Expression<? extends Y> v, Y x, Y y);

//comparisons for numeric operands:

* Create a predicate for testing whether the first argument is

* greater than the second.

* @param x expression

* @param y expression

* @return greater-than predicate

*/

Predicate gt(Expression<? extends Number> x, Expression<? extends Number> y);

/**

Create a predicate for testing whether
greater than the second.

@param x expression

@param y value

@return greater-than predicate

* % ¥ * *

*/
Predicate gt(Expression<? extends Number>

* Create a predicate for testing whether
* greater than or equal to the second.

* @param x expression

* @param y expression

* @return greater-than-or-equal predicate
*/

Predicate ge(Expression<? extends Number>

* Create a predicate for testing whether
* greater than or equal to the second.
* @param x expression
* @param y value

* @return greater-than-or-equal predicate
*/

Predicate ge(Expression<? extends Number>

/'k*

* Create a predicate for testing whether
* less than the second.

* @param X expression

* @param y expression

* @return less-than predicate

*/

Predicate 1t(Expression<? extends Number>

/**

* (Create a predicate for testing whether
* less than the second.

* @param x expression

* @param y value

* @return less-than predicate

*/

Predicate 1t(Expression<? extends Number>

* Create a predicate for testing whether
* less than or equal to the second.

* @param x expression

* @param y expression

* @return less-than-or-equal predicate
*/

Predicate le(Expression<? extends Number>

* Create a predicate for testing whether
* less than or equal to the second.
* @param x expression
* @param y value

* @return less-than-or-equal predicate
*/

Predicate le(Expression<? extends Number>

//numerical operations:

/**

* Create an expression that returns the s

the first argument is

X, Number y);

the first argument is

x, Expression<? extends Number> y);

the first argument is

X, Number y);

the first argument is

x, Expression<? extends Number> y);

the first argument is

X, Number y);

the first argument is

x, Expression<? extends Number> y);

the first argument is

X, Number y);

ign of its

453

argument, that is, {@code 1} if its argument is
positive, {@code -1} if its argument is negative,
or {@code 0} if its argument is exactly zero.
@param X expression

@return sign

* X kX

*/
Expression<Integer> sign(Expression<? extends Number> x);

/**

* Create an expression that returns the arithmetic negation
* of its argument.

* @param x expression

* @return arithmetic negation

*/

<N extends Number> Expression<N> neg(Expression<N> x);

/**

* Create an expression that returns the absolute value
* of its argument.

* @param x expression

* @return absolute value

*/

<N extends Number> Expression<N> abs(Expression<N> x);

* (Create an expression that returns the ceiling of its
* argument, that is, the smallest integer greater than
* or equal to its argument.
* @param x expression

* @return ceiling

*/

<N extends Number> Expression<N> ceiling(Expression<N> x);

* Create an expression that returns the floor of its
* argument, that is, the largest integer smaller than
* or equal to its argument.
* @param x expression

* @return floor

*/

<N extends Number> Expression<N> floor(Expression<N> x);

/**

* (Create an expression that returns the sum

* of its arguments.

* @param X expression

* @param y expression

* @return sum

*/

<N extends Number> Expression<N> sum(Expression<? extends N> x, Expression<? extends N> y);

/**

* Create an expression that returns the sum

* of its arguments.

* @param x expression

* @param y value

* @return sum

*/

<N extends Number> Expression<N> sum(Expression<? extends N> x, N y);

* Create an expression that returns the sum

* of its arguments.

* @param x value

* @param y expression

* @return sum

*/

<N extends Number> Expression<N> sum(N x, Expression<? extends N> y);

454

* (Create an expression that returns the product

* of its arguments.

* @param x expression

* @param y expression

* @return product

*/

<N extends Number> Expression<N> prod(Expression<? extends N> x, Expression<? extends N> y);

* Create an expression that returns the product

* of its arguments.

* @param x expression

* @param y value

* @return product

*/

<N extends Number> Expression<N> prod(Expression<? extends N> x, N y);

* Create an expression that returns the product

* of its arguments.

* @param x value

* @param y expression

* @return product

*/

<N extends Number> Expression<N> prod(N x, Expression<? extends N> y);

/'k*

* Create an expression that returns the difference

* between its arguments.

* @param x expression

* @param y expression

* @return difference

*/

<N extends Number> Expression<N> diff(Expression<? extends N> x, Expression<? extends N> y);

/**

* (Create an expression that returns the difference

* between its arguments.

* @param x expression

* @param y value

* @return difference

*/

<N extends Number> Expression<N> diff(Expression<? extends N> x, N y);

* Create an expression that returns the difference

* between its arguments.

* @param x value

* @param y expression

* @return difference

*/

<N extends Number> Expression<N> diff(N x, Expression<? extends N> y);

* Create an expression that returns the quotient

* of its arguments.

* @param x expression

* @param y expression

* @return quotient

*/

Expression<Number> quot(Expression<? extends Number> x, Expression<? extends Number> y);

/'k*
* Create an expression that returns the quotient
* of its arguments.

455

* @param x expression

* @param y value

* @return quotient

*/

Expression<Number> quot(Expression<? extends Number> x, Number y);

* Create an expression that returns the quotient

* of its arguments.

* @param x value

* @param y expression

* @return quotient

*/

Expression<Number> quot(Number x, Expression<? extends Number> y);

* Create an expression that returns the modulus

* (remainder under integer division) of its

* arguments.

* @param x expression

* @param y expression

* @return modulus

*/

Expression<Integer> mod(Expression<Integer> x, Expression<Integer> y);

/**

* Create an expression that returns the modulus
* (remainder under integer division) of its

* arguments.

* @param X expression

*

@param y value

* @return modulus

*/

Expression<Integer> mod(Expression<Integer> x, Integer y);

* (Create an expression that returns the modulus
* (remainder under integer division) of its
* arquments.

* @param x value
* @param y expression

* @return modulus

*/

Expression<Integer> mod(Integer x, Expression<Integer> y);

/'k*

* Create an expression that returns the square root

* of its argument.

* @param X expression

* @return square root

*/

Expression<Double> sqrt(Expression<? extends Number> x);

* Create an expression that returns the exponential
* of its argument, that is, Euler's number <i>e</i>
* raised to the power of its argument.
* @param x expression

* @return exponential

*/

Expression<Double> exp(Expression<? extends Number> x);

/'k*

Create an expression that returns the natural logarithm
of its argument.

@param x expression

@return natural logarithm

L I

456

*/
Expression<Double> 1n(Expression<? extends Number> x);

* (Create an expression that returns the first argument

* raised to the power of its second argument.

* @param x base

* @param y exponent

* @return the base raised to the power of the exponent

*/

Expression<Double> power (Expression<? extends Number> x, Expression<? extends Number> y);

* Create an expression that returns the first argument

* raised to the power of its second argument.

* @param x base

* @param y exponent

* @return the base raised to the power of the exponent

*/

Expression<Double> power(Expression<? extends Number> x, Number y);

* Create an expression that returns the first argument

* rounded to the number of decimal places given by the

* second argument.

* @param x base

* @param n number of decimal places

* @return the rounded value

*/

<T extends Number> Expression<T> round(Expression<T> x, Integer n);

//typecasts:

/*'k

* Typecast. Returns same expression object.

* @param number numeric expression

* @return {@literal Expression<Long>}

*/

Expression<Long> tolLong(Expression<? extends Number> number);

/**

* Typecast. Returns same expression object.

* @param number numeric expression

* @return {@literal Expression<Integer>}

*/

Expression<Integer> toInteger(Expression<? extends Number> number);

/**

* Typecast. Returns same expression object.

* @param number numeric expression

* @return {@literal Expression<Float>}

*/

Expression<Float> toFloat(Expression<? extends Number> number);

/**

* Typecast. Returns same expression object.

* @param number numeric expression

* @return {@literal Expression<Double>}

*/

Expression<Double> toDouble(Expression<? extends Number> number);

/'k*

* Typecast. Returns same expression object.
* @param number numeric expression

* @return {@literal Expression<BigDecimal>}
*/

457

458

Expression<BigDecimal> toBigDecimal(Expression<? extends Number> number);

/**

* Typecast. Returns same expression object.

* @param number numeric expression

* @return {@literal Expression<BigInteger>}

*/

Expression<BigInteger> toBigInteger(Expression<? extends Number> number);

/'k*

* Typecast. Returns same expression object.

* @param character expression

* @return {@literal Expression<String>}

*/

Expression<String> toString(Expression<Character> character);

//literals:

/**

* Create an expression for a literal.

* @param value value represented by the expression
* @return expression literal

* @throws IllegalArgumentException if value is null
*/

<T> Expression<T> literal(T value);

/**

* Create an expression for a null literal with the given type.
* @param resultClass type of the null literal

* @return null expression literal

*/

<T> Expression<T> nulllLiteral(Class<T> resultClass);

//parameters:

/**
* Create a parameter expression.
* @param paramClass parameter class
* @return parameter expression
*
/
<T> ParameterExpression<T> parameter(Class<T> param(Class);

/**

* Create a parameter expression with the given name.
* @param paramClass parameter class

* @param name name that can be used to refer to

* the parameter
* @return parameter expression
*/

<T> ParameterExpression<T> parameter(Class<T> paramClass, String name);

//collection operations:

/**

* Create a predicate that tests whether a collection is empty.

* @param collection expression

* @return is-empty predicate

*/

<C extends Collection<?>> Predicate isEmpty(Expression<C> collection);

/'k*

* Create a predicate that tests whether a collection is
* not empty.

* @param collection expression

* @return is-not-empty predicate

*/
<C extends Collection<?>> Predicate isNotEmpty(Expression<C> collection);

/**

* (Create an expression that tests the size of a collection.

* @param collection expression

* @return size expression

*/

<C extends Collection<?>> Expression<Integer> size(Expression<C> collection);

/**

* Create an expression that tests the size of a collection.

* @param collection collection

* @return size expression

*/

<C extends Collection<?>> Expression<Integer> size(C collection);

* Create a predicate that tests whether an element is

* a member of a collection.

* If the collection is empty, the predicate will be false.

* @param elem element expression

* @param collection expression

* @return is-member predicate

*/

<E, C extends Collection<E>> Predicate isMember(Expression<E> elem, Expression<C> collection);

/**

* Create a predicate that tests whether an element is

* 3 member of a collection.

* If the collection is empty, the predicate will be false.

* @param elem element

* @param collection expression

* @return is-member predicate

*/

<E, C extends Collection<E>> Predicate isMember(E elem, Expression<C> collection);

/**

* (Create a predicate that tests whether an element is

* not a member of a collection.

If the collection is empty, the predicate will be true.
@param elem element expression

@param collection expression

@return is-not-member predicate

* % kX

*/
<E, C extends Collection<E>> Predicate isNotMember(Expression<E> elem, Expression<C> collection);

* Create a predicate that tests whether an element is

* not a member of a collection.

* If the collection is empty, the predicate will be true.

* @param elem element

* @param collection expression

* @return is-not-member predicate

*/

<E, C extends Collection<E>> Predicate isNotMember(E elem, Expression<C> collection);

//get the values and keys collections of the Map, which may then
//be passed to size(), isMember(), isEmpty(), etc

/**

* Create an expression that returns the values of a map.

* @param map map

* @return collection expression

*/

<V, M extends Map<?, V>> Expression<Collection<V>> values(M map);

459

460

/**

* (Create an expression that returns the keys of a map.
* @param map map

* @return set expression

*/

<K, M extends Map<K, ?>> Expression<Set<K>> keys(M map);

//string functions:

/**

* Create a predicate for testing whether the expression

* satisfies the given pattern.

* @param x string expression

* @param pattern string expression

* @return like predicate

*/

Predicate like(Expression<String> x, Expression<String> pattern);

/**

* (Create a predicate for testing whether the expression
* satisfies the given pattern.

* @param x string expression

* @param pattern string

* @return like predicate

*/

Predicate 1like(Expression<String> x, String pattern);

/**

Create a predicate for testing whether the expression

satisfies the given pattern.

@param x string expression

@param pattern string expression

@param escapeChar escape character expression

* @return like predicate

*/

Predicate like(Expression<String> x, Expression<String> pattern, Expression<Character> escapeChar);

* Xk X F

* (Create a predicate for testing whether the expression

* satisfies the given pattern.

* @param x string expression

* @param pattern string expression

* @param escapeChar escape character

* @return like predicate

*/

Predicate like(Expression<String> x, Expression<String> pattern, char escapeChar);

/**

* Create a predicate for testing whether the expression

* satisfies the given pattern.

* @param x string expression

* @param pattern string

* @param escapeChar escape character expression

* @return like predicate

*/

Predicate like(Expression<String> x, String pattern, Expression<Character> escapeChar);

/**

* Create a predicate for testing whether the expression
* satisfies the given pattern.

* @param x string expression

* @param pattern string

* @param escapeChar escape character

* @return like predicate

*/

Predicate like(Expression<String> x, String pattern, char escapeChar);

* Create a predicate for testing whether the expression

* does not satisfy the given pattern.

* @param x string expression

* @param pattern string expression

* @return not-like predicate

*/

Predicate notLike(Expression<String> x, Expression<String> pattern);

* Create a predicate for testing whether the expression
* does not satisfy the given pattern.

* @param x string expression

* @param pattern string

* @return not-like predicate

*/

Predicate notLike(Expression<String> x, String pattern);

/**

* (Create a predicate for testing whether the expression
* does not satisfy the given pattern.

@param x string expression

@param pattern string expression

@param escapeChar escape character expression
@return not-like predicate

* % * X

*/
Predicate notLike(Expression<String> x, Expression<String> pattern, Expression<Character> escapeChar);

/**

* (Create a predicate for testing whether the expression

* does not satisfy the given pattern.

* @param x string expression

* @param pattern string expression

* @param escapeChar escape character

* @return not-like predicate

*/

Predicate notlLike(Expression<String> x, Expression<String> pattern, char escapeChar);

/**

* Create a predicate for testing whether the expression

* does not satisfy the given pattern.

* @param x string expression

* @param pattern string

* @param escapeChar escape character expression

* @return not-like predicate

*/

Predicate notlLike(Expression<String> x, String pattern, Expression<Character> escapeChar);

/**

Create a predicate for testing whether the expression
does not satisfy the given pattern.

@param x string expression

@param pattern string

@param escapeChar escape character

@return not-like predicate

* 0% kX F X

*/
Predicate notlLike(Expression<String> x, String pattern, char escapeChar);

* (Create an expression for string concatenation.

* If the given list of expressions is empty, returns
* an expression equivalent to {@code literal("")}.

* @param expressions string expressions

* @return expression corresponding to concatenation

461

Expression<String> concat(List<Expression<String>> expressions);

/**

* (Create an expression for string concatenation.

* @param x string expression

* @param y string expression

* @return expression corresponding to concatenation

*/

Expression<String> concat(Expression<String> x, Expression<String> y);

/**

* Create an expression for string concatenation.

* @param x string expression

* @param y string

* @return expression corresponding to concatenation

*/

Expression<String> concat(Expression<String> x, String y);

/**

* (Create an expression for string concatenation.

* @param x string

* @param y string expression

* @return expression corresponding to concatenation

*/

Expression<String> concat(String x, Expression<String> y);

/'k*

Create an expression for substring extraction.

Extracts a substring starting at the specified position

through to end of the string.

First position is 1.

@param x string expression

@param from start position expression

* @return expression corresponding to substring extraction

*/

Expression<String> substring(Expression<String> x, Expression<Integer> from);

* Xk X X F

* (Create an expression for substring extraction.

* Extracts a substring starting at the specified position

* through to end of the string.

* First position is 1.

* @param x string expression

* @param from start position

* @return expression corresponding to substring extraction
*/

Expression<String> substring(Expression<String> x, int from);

~
*
*

Create an expression for substring extraction.

Extracts a substring of given length starting at the
specified position.

First position is 1.

@param x string expression

@param from start position expression

@param len Tlength expression

@return expression corresponding to substring extraction

E R I G

*/
Expression<String> substring(Expression<String> x, Expression<Integer> from, Expression<Integer> len);

/**

Create an expression for substring extraction.
Extracts a substring of given length starting at the
specified position.

First position is 1.

@param x string expression

@param from start position

ECE I

462

* @param len length

* @return expression corresponding to substring extraction

*/

Expression<String> substring(Expression<String> x, int from, int len);

/**

* Used to specify how strings are trimmed.
*/

enum Trimspec {

/**

* Trim from leading end.
*/

LEADING,

/**

* Trim from trailing end.
*/
TRAILING,

/**
* Trim from both ends.
*/
BOTH
}

/'k*

* Create expression to trim blanks from both ends of
* 3 string.

* @param x expression for string to trim

* @return trim expression

*/

Expression<String> trim(Expression<String> x);

/**

* Create expression to trim blanks from a string.

* @param ts trim specification

* @param x expression for string to trim

* @return trim expression

*/

Expression<String> trim(Trimspec ts, Expression<String> x);

* (Create expression to trim character from both ends of

* 3 string.

* @param t expression for character to be trimmed

* @param x expression for string to trim

* @return trim expression

*/

Expression<String> trim(Expression<Character> t, Expression<String> x);

* (Create expression to trim character from a string.
* @param ts trim specification

* @param t expression for character to be trimmed
* @param x expression for string to trim

* @return trim expression

*/

Expression<String> trim(Trimspec ts, Expression<Character> t, Expression<String> x);

/**

* (Create expression to trim character from both ends of
* 3 string.

* @param t character to be trimmed

* @param x expression for string to trim

* @return trim expression

*/

463

Expression<String> trim(char t, Expression<String> x);

* Create expression to trim character from a string.

* @param ts trim specification

* @param t character to be trimmed

* @param x expression for string to trim

* @return trim expression

*/

Expression<String> trim(Trimspec ts, char t, Expression<String> x);

/**

* (Create expression for converting a string to lowercase.
* @param x string expression

* @return expression to convert to lowercase

*/

Expression<String> lower (Expression<String> x);

/**

* (Create expression for converting a string to uppercase.
* @param x string expression

* @return expression to convert to uppercase

*/

Expression<String> upper(Expression<String> x);

/**

* Create expression to return length of a string.
* @param x string expression

* @return length expression

*/

Expression<Integer> length(Expression<String> x);

/**

* Create an expression for the leftmost substring of a string,
* @param x string expression

* @param len length of the substring to return

* @return expression for the leftmost substring

*/

Expression<String> left(Expression<String> x, int len);

/**

* Create an expression for the rightmost substring of a string,
* @param x string expression

* @param len Tlength of the substring to return

* @return expression for the rightmost substring

*/

Expression<String> right(Expression<String> x, int len);

/**

* Create an expression for the leftmost substring of a string,

* @param x string expression

* @param len length of the substring to return

* @return expression for the leftmost substring

*/

Expression<String> left(Expression<String> x, Expression<Integer> len);

/**

* (Create an expression for the rightmost substring of a string,

* @param x string expression

* @param len length of the substring to return

* @return expression for the rightmost substring

*/

Expression<String> right(Expression<String> x, Expression<Integer> len);

/**
* Create an expression replacing every occurrence of a substring
* within a string.

464

@param x string expression

@param substring the literal substring to replace
@param replacement the replacement string

@return expression for the resulting string

* % kX

*/
Expression<String> replace(Expression<String> x, Expression<String> substring, Expression<String> replacement);

/'k*

* (Create an expression replacing every occurrence of a substring

* within a string.

* @param x string expression

* @param substring the literal substring to replace

* @param replacement the replacement string

* @return expression for the resulting string

*/

Expression<String> replace(Expression<String> x, String substring, Expression<String> replacement);

* Create an expression replacing every occurrence of a substring

* within a string.

* @param x string expression

* @param substring the literal substring to replace

* @param replacement the replacement string

* @return expression for the resulting string

*/

Expression<String> replace(Expression<String> x, Expression<String> substring, String replacement);

/**

Create an expression replacing every occurrence of a substring

within a string.

@param x string expression

@param substring the literal substring to replace

@param replacement the replacement string

* @return expression for the resulting string

*/

Expression<String> replace(Expression<String> x, String substring, String replacement);

L I

~
*
*

Create expression to locate the position of one string
within another, returning position of first character

if found.

The first position in a string is denoted by 1. If the
string to be located is not found, @ is returned.
<p>Warning: the order of the parameters
of this method is reversed compared to the corresponding
function in JPQL.

@param x expression for string to be searched

@param pattern expression for string to be located
@return expression corresponding to position

LG T R G R

*/
Expression<Integer> locate(Expression<String> x, Expression<String> pattern);

/**

* (Create expression to locate the position of one string

* within another, returning position of first character

* if found.

* The first position in a string is denoted by 1. If the
* string to be located is not found, @ is returned.

* <p>Warning: the order of the parameters
* of this method is reversed compared to the corresponding
* function in JPQL.

* @param x expression for string to be searched

* @param pattern string to be located

*

@return expression corresponding to position
*/
Expression<Integer> locate(Expression<String> x, String pattern);

465

~
*
*

Create expression to locate the position of one string
within another, returning position of first character
if found.

The first position in a string is denoted by 1. If the
string to be located is not found, @ is returned.
<p>Warning: the order of the first two
parameters of this method is reversed compared to the
corresponding function in JPQL.

@param x expression for string to be searched

@param pattern expression for string to be located
@param from expression for position at which to start search
@return expression corresponding to position

L I D R

*/
Expression<Integer> locate(Expression<String> x, Expression<String> pattern, Expression<Integer> from);

/**

* Create expression to locate the position of one string

* within another, returning position of first character

* if found.

* The first position in a string is denoted by 1. If the
* string to be located is not found, @ is returned.

* <p>Warning: the order of the first two
* parameters of this method is reversed compared to the

* corresponding function in JPQL.

* @param x expression for string to be searched

* @param pattern string to be located

*

@param from position at which to start search

* @return expression corresponding to position

*/

Expression<Integer> locate(Expression<String> x, String pattern, int from);

// Date/time/timestamp functions:

/**

* (reate expression to return current date.
* @return expression for current date

*/

Expression<java.sql.Date> currentDate();

/**

* Create expression to return current timestamp.
* @return expression for current timestamp

*/

Expression<java.sql.Timestamp> currentTimestamp();

/**

* Create expression to return current time.
* @return expression for current time

*/

Expression<java.sql.Time> currentTime();

/**

* (Create expression to return current local date.
* @return expression for current date

*/

Expression<java.time.lLocalDate> localDate();

/**

* (Create expression to return current local datetime.
* @return expression for current timestamp

*/

Expression<java.time.lLocalDateTime> localDateTime();

/**

466

* (Create expression to return current local time.
* @return expression for current time

*/

Expression<java.time.LocalTime> localTime();

/**

* Create an expression that returns the value of a

* field extracted from a date, time, or datetime.

* @param field a temporal field type

* @param temporal a date, time, or datetime

* @return expression for the value of the extracted field
* @since 3.2

*/

<N, T extends Temporal> Expression<N> extract(TemporalField<N,T> field, Expression<T> temporal);

//in builders:

/**

* Interface used to build in predicates.
*/

interface In<T> extends Predicate {

/**

* Return the expression to be tested against the
* 1ist of values.

* @return expression

*/

Expression<T> getExpression();

/**

* Add to list of values to be tested against.
* @param value value

* @return in predicate

*/

In<T> value(T value);

/**

* Add to list of values to be tested against.
* @param value expression

* @return in predicate

*/

In<T> value(Expression<? extends T> value);

}

/'k*

* (Create predicate to test whether given expression

* is contained in a list of values.

* @param expression to be tested against list of values
* @return in predicate

*/

<T> In<T> in(Expression<? extends T> expression);

// coalesce, nullif:

* (Create an expression that returns null if all its arguments

* evaluate to null, and the value of the first non-null argument
* otherwise.

* @param x expression

* @param y expression

* @return coalesce expression

*/

<Y> Expression<Y> coalesce(Expression<? extends Y> x, Expression<? extends Y> y);

/**

467

468

Create an expression that returns null if all its arguments
evaluate to null, and the value of the first non-null argument
otherwise.

@param X expression

@param y value

@return coalesce expression

* 0% kX F X

*/
<Y> Expression<Y> coalesce(Expression<? extends Y> x, Y y);

* Create an expression that tests whether its argument are
* equal, returning null if they are and the value of the

* first expression if they are not.

* @param x expression

* @param y expression

* @return nullif expression

*/

<Y> Expression<Y> nullif(Expression<Y> x, Expression<?> y);

* Create an expression that tests whether its argument are
* equal, returning null if they are and the value of the
* first expression if they are not.
* @param x expression
* @param y value

* @return nullif expression

*/

<Y> Expression<Y> nullif(Expression<Y> x, Y y);

// coalesce builder:
Interface used to build coalesce expressions.

that returns null if all its arguments evaluate to null,
and the value of its first non-null argument otherwise.
*/
interface Coalesce<T> extends Expression<T> {

*
*
* A coalesce expression is equivalent to a case expression
*
*

/‘k*

* Add an argument to the coalesce expression.
* @param value value

* @return coalesce expression

*/

Coalesce<T> value(T value);

/**

* Add an argument to the coalesce expression.

* @param value expression

* @return coalesce expression

*/

Coalesce<T> value(Expression<? extends T> value);

}

/**
* Create a coalesce expression.
* @return coalesce expression
*

/
<T> Coalesce<T> coalesce();

//case builders:

/**

* Interface used to build simple case expressions.

* Case conditions are evaluated in the order in which
* they are specified.

*/

interface SimpleCase<C,R> extends Expression<R> {

/**

* Return the expression to be tested against the
* conditions.

* @return expression

*/

Expression<C> getExpression();

/**

* Add a when/then clause to the case expression.
* @param condition "when" condition

* @param result "then" result value

* @return simple case expression

*/

SimpleCase<C, R> when(C condition, R result);

/**

* Add a when/then clause to the case expression.

* @param condition "when" condition

* @param result "then" result expression

* @return simple case expression

*/

SimpleCase<C, R> when(C condition, Expression<? extends R> result);

/**

* Add a when/then clause to the case expression.

* @param condition "when" condition

* @param result "then" result value

* @return simple case expression

*/

SimpleCase<C, R> when(Expression<? extends C> condition, R result);

/**

* Add a when/then clause to the case expression.

* @param condition "when" condition

* @param result "then" result expression

* @return simple case expression

*/

SimpleCase<C, R> when(Expression<? extends C> condition, Expression<? extends R> result);

/**

* Add an "else" clause to the case expression.
* @param result "else" result

* @return expression

*/

Expression<R> otherwise(R result);

/**

* Add an "else" clause to the case expression.

* @param result "else" result expression

* @return expression

*/

Expression<R> otherwise(Expression<? extends R> result);

/**

* Create a simple case expression.

* @param expression to be tested against the case conditions

* @return simple case expression

*/

<C, R> SimpleCase<C,R> selectCase(Expression<? extends C> expression);

469

/**

* Interface used to build general case expressions.

* (Case conditions are evaluated in the order in which
* they are specified.

*/

interface Case<R> extends Expression<R> {

/**

* Add a when/then clause to the case expression.

* @param condition "when" condition

* @param result "then" result value

* @return general case expression

*/

Case<R> when(Expression<Boolean> condition, R result);

/**

* Add a when/then clause to the case expression.

* @param condition "when" condition

* @param result "then" result expression

* @return general case expression

*/
Case<R> when(Expression<Boolean> condition, Expression<? extends R> result);

/**

* Add an "else" clause to the case expression.
* @param result "else" result

* @return expression

*/

Expression<R> otherwise(R result);

/**

* Add an "else" clause to the case expression.

* @param result "else" result expression

* @return expression

*/

Expression<R> otherwise(Expression<? extends R> result);

}

/**

* Create a general case expression.
* @return general case expression
*/

<R> Case<R> selectCase();

/**

Create an expression for the execution of a database
function.
@param name function name
@param type expected result type
@param args function arguments

* @return expression

*/

<T> Expression<T> function(String name, Class<T> type,

Expression<?>... args);

* Xk Xk

// methods for downcasting:

* Downcast Join object to the specified type.

* @param join Join object

* @param type type to be downcast to

* @return Join object of the specified type

* @since 2.1

*/

<X, T, V extends T> Join<X, V> treat(Join<X, T> join, Class<V> type);

470

* Downcast CollectionJoin object to the specified type.

* @param join CollectionJoin object

* @param type type to be downcast to

* @return CollectionJoin object of the specified type

* @since 2.1

*/

<X, T, E extends T> CollectionJoin<X, E> treat(Collectionloin<X, T> join, Class<E> type);

/'k*

* Downcast SetJoin object to the specified type.

* @param join SetJoin object

* @param type type to be downcast to

* @return SetJoin object of the specified type

* @since 2.1

*/

<X, T, E extends T> SetJoin<X, E> treat(SetJoin<X, T> join, Class<E> type);

* Downcast ListJoin object to the specified type.

* @param join ListJoin object

* @param type type to be downcast to

* @return ListJoin object of the specified type

* @since 2.1

*/

<X, T, E extends T> ListJoin<X, E> treat(ListJoin<X, T> join, Class<E> type);

/**

* Downcast MapJoin object to the specified type.

* @param join MapJoin object

* @param type type to be downcast to

* @return MapJloin object of the specified type

* @since 2.1

*/

<X, K, T, V extends T> MapJloin<X, K, V> treat(MapJoin<X, K, T> join, Class<V> type);

* Downcast Path object to the specified type.

* @param path path

* @param type type to be downcast to

* @return Path object of the specified type

* @since 2.1

*/

<X, T extends X> Path<T> treat(Path<X> path, Class<T> type);

/**

* Downcast Root object to the specified type.

* @param root root

* @param type type to be downcast to

* @return Root object of the specified type

* @since 2.1

*/

<X, T extends X> Root<T> treat(Root<X> root, Class<T> type);

/**
* Create a query which is the union of the given queries.
* @return a new criteria query which returns the union of

* the results of the given queries
* @since 3.2
*/

<T> CriteriaSelect<T> union(CriteriaSelect<? extends T> left, CriteriaSelect<? extends T> right);

/**
* Create a query which is the union of the given queries,

* without elimination of duplicate results.
* @return a new criteria query which returns the union of

471

* the results of the given queries

* @since 3.2

*/

<T> CriteriaSelect<T> unionAll(CriteriaSelect<? extends T> left, CriteriaSelect<? extends T> right);

/**

* Create a query which is the intersection of the given queries.
* @return a new criteria query which returns the intersection of

* the results of the given queries
* @since 3.2
*/

<T> CriteriaSelect<T> intersect(CriteriaSelect<? super T> left, CriteriaSelect<? super T> right);

/**

* Create a query which is the intersection of the given queries,
* without elimination of duplicate results.

* @return a new criteria query which returns the intersection of

* the results of the given queries
* @since 3.2
*/

<T> CriteriaSelect<T> intersectAll(CriteriaSelect<? super T> left, CriteriaSelect<? super T> right);

/**

* Create a query by (setwise) subtraction of the second query

* from the first query.

* @return a new criteria query which returns the result of

* subtracting the results of the second query from the

* results of the first query

* @since 3.2

*/

<T> CriteriaSelect<T> except(CriteriaSelect<T> left, CriteriaSelect<?> right);

/**

* Create a query by (setwise) subtraction of the second query

* from the first query, without elimination of duplicate results.

* @return a new criteria query which returns the result of

* subtracting the results of the second query from the

* results of the first query

* @since 3.2

*/

<T> CriteriaSelect<T> exceptAll(CriteriaSelect<T> left, CriteriaSelect<?> right);

C.2.CriteriaDelete

import jakarta.persistence.metamodel.EntityType;

/**

The {@code CriteriaDelete} interface defines functionality for
performing bulk delete operations using the Criteria API

<p>Criteria API bulk delete operations map directly to database
delete operations. The persistence context is not synchronized
with the result of the bulk delete.

<p> A {@code CriteriaDelete} object must have a single root.

@param <T> the entity type that is the target of the DELETE

* 0% kX ok Xk Xk Xk X

@since 2.1
*/
public interface CriteriaDelete<T> extends CommonAbstractCriteria {

/**

472

Create and add a query root corresponding to the entity

that is the target of the DELETE.

A {@code CriteriaDelete} object has a single root, the entity that
is being deleted.

@param entityClass the entity class

@return query root corresponding to the given entity

* 0% kX F X

*/
Root<T> from(Class<T> entityClass);

* Create and add a query root corresponding to the entity

* that is the target of the DELETE.
* A {@code CriteriaDelete} object has a single root, the entity that
* is being deleted.

* @param entity metamodel entity representing the entity
* of type X

* @return query root corresponding to the given entity

*/
Root<T> from(EntityType<T> entity);

/**

* Return the query root.
* @return the query root
*/

Root<T> getRoot();

/'k*

Modify the DELETE query to restrict the target of the deletion
according to the specified boolean expression.

Replaces the previously added restriction(s), if any.

@param restriction a simple or compound boolean expression
@return the modified delete query

* % X ¥ *

*/
CriteriaDelete<T> where(Expression<Boolean> restriction);

~
*
*

Modify the DELETE query to restrict the target of the deletion
according to the conjunction of the specified restriction
predicates.

Replaces the previously added restriction(s), if any.

If no restrictions are specified, any previously added
restrictions are simply removed.

@param restrictions zero or more restriction predicates
@return the modified delete query

ECEE I

*/
CriteriaDelete<T> where(Predicate... restrictions);

C.3. CriteriaQuery

package jakarta.persistence.criteria;

import jakarta.persistence.Tuple;

import java.util.List;

* The {@code CriteriaQuery} interface defines functionality that is
* specific to top-level queries.

*

* @param <T> the type of the defined result

.

@since 2.0

473

474

public interface CriteriaQuery<T> extends AbstractQuery<T>, CriteriaSelect<T> {

~
*
*

Specify the item that is to be returned in the query result.
Replaces the previously specified selection(s), if any.

<p> Note: Applications using the string-based API may need to
specify the type of the select item when it results from

a get or join operation and the query result type is
specified.

<p>For example:

{@snippet :

CriteriaQuery<String> q = cb.createQuery(String.class);
Root<Order> order = q.from(Order.class);
q.select(order.get("shippingAddress").<String>get("state"));

CriteriaQuery<Product> g2 = cb.createQuery(Product.class);
q2.select(q2.from(Order.class)

.join("items")

.<Item, Product>join("product"));

}

@param selection selection specifying the item that is
to be returned in the query result
@return the modified query
@throws I1legalArgumentException if the selection is
a compound selection and more than one selection
item has the same assigned alias

EE S T T R I T R R I T

*/

CriteriaQuery<T> select(Selection<? extends T> selection);

~
*
*

Specify the selection items that are to be returned in the query result.
Replaces the previously specified selection(s), if any.

<p> The type of the result of the query execution depends on the specification
of the type of the criteria query object created as well as the arguments
to the {@code multiselect} method.

<p> An argument to the multiselect method must not be a tuple- or array-valued
compound selection item.

<p>The semantics of this method are as follows:

If the type of the criteria query is {@code CriteriaQuery<Tuple>}

(i.e., a criteria query object created by either the {@code createTupleQuery}
method or by passing a {@link Tuple} class argument to the {@code createQuery}
method), a {@link Tuple} object corresponding to the arguments of the

{@code multiselect} method, in the specified order, will be instantiated and
returned for each row that results from the query execution.

 If the type of the criteria query is {@code CriteriaQuery<X>}

for some user-defined class X (i.e., a criteria query object created by
passing a X class argument to the {@code createQuery} method), the arguments
to the {@code multiselect} method will be passed to the X constructor and an
instance of type X will be returned for each row.

 If the type of the criteria query is {@code CriteriaQuery<X[]>}

for some class X, an instance of type {@code X[]} will be returned for each row.
The elements of the array will correspond to the arguments of the

{@code multiselect} method, in the specified order.

 If the type of the criteria query is {@code CriteriaQuery<Object>}
or if the criteria query was created without specifying a type, and only a single
argument is passed to the {@code multiselect} method, an instance of type

L I R T R R I S R I R R R R N T N N N

{@code Object} will be returned for each row.

 If the type of the criteria query is {@code CriteriaQuery<Object>}

or if the criteria query was created without specifying a type, and more than one
argument is passed to the {@code multiselect} method, an instance of type

{@code Object[]} will be instantiated and returned for each row. The elements of
the array will correspond to the arguments to the {@code multiselect} method, in
the specified order.

results to be returned by the query
@return the modified query
@throws IllegalArgumentException if a selection item is
not valid or if more than one selection item has
the same assigned alias

*
*
*
*
*
*
*
*
*
*
* @param selections selection items corresponding to the
*
*
*
*
*
*
* @deprecated Since this method is not typesafe, the use of
* {@link CriteriaBuilder#array} or {@link CriteriaBuilder#tuple}
* with {@link #select} is strongly preferred.
*/
@Deprecated(since = "3.2")
CriteriaQuery<T> multiselect(Selection<?>... selections);

~
*
*

Specify the selection items that are to be returned in the query result.
Replaces the previously specified selection(s), if any.

<p> The type of the result of the query execution depends on the specification

of the type of the criteria query object created as well as the argument to the
{@code multiselect} method. An element of the list passed to the {@code multiselect}
method must not be a tuple- or array-valued compound selection item.

<p> The semantics of this method are as follows:

 If the type of the criteria query is {@code CriteriaQuery<Tuple>}

(i.e., a criteria query object created by either the {@code createTupleQuery}
method or by passing a {@link Tuple} class argument to the {@code createQuery}
method), a {@code Tuple} object corresponding to the elements of the list passed
to the {@code multiselect} method, in the specified order, will be instantiated
and returned for each row that results from the query execution.

 If the type of the criteria query is {@code CriteriaQuery<X>}

for some user-defined class X (i.e., a criteria query object created by passing
a X class argument to the {@code createQuery} method), the elements of the list
passed to the {@code multiselect} method will be passed to the X constructor
and an instance of type X will be returned for each row.

 If the type of the criteria query is {@code CriteriaQuery<X[]>}

for some class X, an instance of type {@code X[]} will be returned for
each row. The elements of the array will correspond to the elements of
the 1list passed to the {@code multiselect} method, in the specified order.

 If the type of the criteria query is {@code CriteriaQuery<Object>}

or if the criteria query was created without specifying a type, and the list
passed to the {@code multiselect} method contains only a single element, an
instance of type {@code Object} will be returned for each row.

 If the type of the criteria query is {@code CriteriaQuery<Object>}

or if the criteria query was created without specifying a type, and the list
passed to the {@code multiselect} method contains more than one element, an
instance of type {@code Object[]} will be instantiated and returned for each row.
The elements of the array will correspond to the elements of the list passed to
the {@code multiselect} method, in the specified order.

EE I S T R R R I T R T R R T N R R I T R R R

* @param selectionlList 1list of selection items corresponding
* to the results to be returned by the
* query

* @return the modified query
* @throws IllegalArgumentException if a selection item is

* not valid or if more than one selection item has
* the same assigned alias

*

* @deprecated Since this method is not typesafe, the use of

* {@link CriteriaBuilder#farray} or {@link CriteriaBuilderftuple}
* with {@link #select} is strongly preferred.

*/
@Deprecated(since = "3.2")

CriteriaQuery<T> multiselect(List<Selection<?>> selectionlist);

* Modify the query to restrict the query result according

* to the specified boolean expression.

* Replaces the previously added restriction(s), if any.

* This method only overrides the return type of the

* corresponding {@code AbstractQuery} method.

* @param restriction a simple or compound boolean expression
* @return the modified query

CriteriaQuery<T> where(Expression<Boolean> restriction);

~
*
*

Modify the query to restrict the query result according

to the conjunction of the specified restriction predicates.
Replaces the previously added restriction(s), if any.

If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions zero or more restriction predicates
@return the modified query

* % X ¥k ok * X *

*/
CriteriaQuery<T> where(Predicate... restrictions);

~
*
*

Modify the query to restrict the query result according

to the conjunction of the specified restriction predicates.
Replaces the previously added restriction(s), if any.

If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the

corresponding {@code AbstractQuery} method.

@param restrictions a list of zero or more restriction predicates
@return the modified query

@since 3.2

L R T R

*/
CriteriaQuery<T> where(List<Predicate> restrictions);

~
*
*

Specify the expressions that are used to form groups over
the query results.

Replaces the previous specified grouping expressions, if any.
If no grouping expressions are specified, any previously
added grouping expressions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param grouping zero or more grouping expressions

@return the modified query

ECIE I T

*/
CriteriaQuery<T> groupBy(Expression<?>... grouping);

/**

476

* Specify the expressions that are used to form groups over

* the query results.

* Replaces the previous specified grouping expressions, if any.
* If no grouping expressions are specified, any previously

* added grouping expressions are simply removed.

* This method only overrides the return type of the

* corresponding {@code AbstractQuery} method.

* @param grouping list of zero or more grouping expressions

* @return the modified query

*/

CriteriaQuery<T> groupBy(List<Expression<?>> grouping);

* Specify a restriction over the groups of the query.

* Replaces the previous having restriction(s), if any.

* This method only overrides the return type of the

* corresponding {@code AbstractQuery} method.

* @param restriction a simple or compound boolean expression
* @return the modified query

*/

CriteriaQuery<T> having(Expression<Boolean> restriction);

~
*
*

Specify restrictions over the groups of the query

according the conjunction of the specified restriction
predicates.

Replaces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions zero or more restriction predicates
@return the modified query

L R T R

*/
CriteriaQuery<T> having(Predicate... restrictions);

~
*
*

Specify restrictions over the groups of the query

according the conjunction of the specified restriction
predicates.

Replaces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions a list of zero or more restriction predicates
@return the modified query

@since 3.2

ECE I T R N SR

*/
CriteriaQuery<T> having(List<Predicate> restrictions);

~
*
*

Specify the ordering expressions that are used to
order the query results.

Replaces the previous ordering expressions, if any.

If no ordering expressions are specified, the previous
ordering, if any, is simply removed, and results will
be returned in no particular order.

The left-to-right sequence of the ordering expressions
determines the precedence, whereby the leftmost has the
highest precedence.

@param o zero or more ordering expressions

@return the modified query

L I R T

*/
CriteriaQuery<T> orderBy(Order... 0);

/**

477

Specify the ordering expressions that are used to
order the query results.

Replaces the previous ordering expressions, if any.

If no ordering expressions are specified, the previous
ordering, if any, is simply removed, and results will
be returned in no particular order.

The order of the ordering expressions in the list
determines the precedence, whereby the first element in
the list has the highest precedence.

@param o 1list of zero or more ordering expressions
@return the modified query

L R N R R

*/
CriteriaQuery<T> orderBy(List<Order> o0);

~
*
*

Specify whether duplicate query results are eliminated.

A true value will cause duplicates to be eliminated.

A false value will cause duplicates to be retained.

If distinct has not been specified, duplicate results must

be retained.

This method only overrides the return type of the

corresponding {@code AbstractQuery} method.

@param distinct boolean value specifying whether duplicate
results must be eliminated from the query result or
whether they must be retained

@return the modified query.

* 0% kX kX 3k Xk X F

*/
CriteriaQuery<T> distinct(boolean distinct);

* Return the ordering expressions in order of precedence.
* Returns empty list if no ordering expressions have been
* specified.

* Modifications to the list do not affect the query.

* @return the list of ordering expressions

*/

List<Order> getOrderList();

C.4. CriteriaSelect

/**

* Abstracts over {@linkplain CriteriaQuery top-level queries} and

* {@linkplain CriteriaBuilder#union unions} and

{@linkplain CriteriaBuilder#intersect intersections} of top-level
queries.

*

*
*
* @param <T> the type returned by the query
*
*

@since 3.2
*/
public interface CriteriaSelect<T> {

}

C.5. Criterialpdate

import jakarta.persistence.metamodel.SingularAttribute;
import jakarta.persistence.metamodel.EntityType;

/**
* The {@code CriterialUpdate} interface defines functionality for

* performing bulk update operations using the Criteria API.
*

478

<p>Criteria API bulk update operations map directly to database
update operations, bypassing any optimistic locking checks.

Portable applications using bulk update operations must manually
update the value of the version column, if desired, and/or manually
validate the value of the version column. The persistence context

is not automatically synchronized with the result of the bulk update.

<p> A {@code Criterialpdate} object must have a single root.

@param <T> the entity type that is the target of the update

L R S T TR R

@since 2.1
*/
public interface Criteriallpdate<T> extends CommonAbstractCriteria {

/**

* Create and add a query root corresponding to the entity
* that is the target of the update.

* A {@code Criterialpdate} object has a single root, the
* entity that is being updated.

* @param entityClass the entity class

* @return query root corresponding to the given entity

*/

Root<T> from(Class<T> entityClass);

/**

* Create and add a query root corresponding to the entity
* that is the target of the update.

* A {@code CriteriaUpdate} object has a single root, the
* entity that is being updated.

* @param entity metamodel entity representing the entity
* of type X

*

@return query root corresponding to the given entity
*/
Root<T> from(EntityType<T> entity);

/**

* Return the query root.
* @return the query root
*/

Root<T> getRoot();

/**

* Update the value of the specified attribute.
* @param attribute attribute to be updated

* @param value new value

@return the modified update query

*

*
/
<Y, X extends Y> CriteriaUpdate<T> set(SingularAttribute<? super T, Y> attribute, X value);

/**

* Update the value of the specified attribute.

* @param attribute attribute to be updated

* @param value new value

* @return the modified update query

*/

<Y> CriteriaUpdate<T> set(SingularAttribute<? super T, Y> attribute, Expression<? extends Y> value);

/**

* Update the value of the specified attribute.

* @param attribute attribute to be updated

* @param value new value

* @return the modified update query

*/

<Y, X extends Y> CriteriaUpdate<T> set(Path<Y> attribute, X value);

/**

479

Update the value of the specified attribute.
@param attribute attribute to be updated
@param value new value

@return the modified update query

* % kX

*/
<Y> CriteriaUpdate<T> set(Path<Y> attribute, Expression<? extends Y> value);

/*'k

* Update the value of the specified attribute.

* @param attributeName name of the attribute to be updated
* @param value new value

* @return the modified update query

*/

CriteriaUpdate<T> set(String attributeName, Object value);

* Modify the update query to restrict the target of the
* update according to the specified boolean expression.
* Replaces the previously added restriction(s), if any.
* @param restriction a simple or compound boolean expression
* @return the modified update query
*/
CriteriaUpdate<T> where(Expression<Boolean> restriction);

/**
* Modify the update query to restrict the target of the
* ypdate according to the conjunction of the specified
* restriction predicates.
* Replaces the previously added restriction(s), if any.
* If no restrictions are specified, any previously added
* restrictions are simply removed.
* @param restrictions zero or more restriction predicates
* @return the modified update query
*/

CriteriaUpdate<T> where(Predicate... restrictions);

}
C.6. AbstractQuery

package jakarta.persistence.criteria;

import java.util.list;
import java.util.Set;
import jakarta.persistence.metamodel.EntityType;

/**
The {@code AbstractQuery} interface defines functionality that is common

to both top-level queries and subqueries.
It is not intended to be used directly in query construction.

*
*
*
*
* <p> A1l queries must have:

* a set of root entities (which may in turn own joins).
* <p> A1l queries may have:

* a conjunction of restrictions.

*

*

*

*

@param <T> the type of the result

@since 2.0
*/
public interface AbstractQuery<T> extends CommonAbstractCriteria {

/**

* Create and add a query root corresponding to the given entity,
* forming a cartesian product with any existing roots.
* @param entityClass the entity class

480

* @return query root corresponding to the given entity
*/
<X> Root<X> from(Class<X> entityClass);

/**

* Create and add a query root corresponding to the given entity,
* forming a cartesian product with any existing roots.

* @param entity metamodel entity representing the entity

* of type X

* @return query root corresponding to the given entity

*/

<X> Root<X> from(EntityType<X> entity);

* Modify the query to restrict the query results according

* to the specified boolean expression.

* Replaces the previously added restriction(s), if any.

* @param restriction a simple or compound boolean expression
* @return the modified query

*/
AbstractQuery<T> where(Expression<Boolean> restriction);

* Modify the query to restrict the query results according
* to the conjunction of the specified restriction predicates.
* Replaces the previously added restriction(s), if any.
* If no restrictions are specified, any previously added
* restrictions are simply removed.

* @param restrictions zero or more restriction predicates

* @return the modified query

*/
AbstractQuery<T> where(Predicate... restrictions);

~
*
*

Modify the query to restrict the query result according

to the conjunction of the specified restriction predicates.
Replaces the previously added restriction(s), if any.

If no restrictions are specified, any previously added
restrictions are simply removed.

@param restrictions a list of zero or more restriction predicates
@return the modified query

@since 3.2

ECE I I

*/
AbstractQuery<T> where(List<Predicate> restrictions);

* Specify the expressions that are used to form groups over
* the query results.
* Replaces the previous specified grouping expressions, if any.
* If no grouping expressions are specified, any previously
* added grouping expressions are simply removed.
* @param grouping zero or more grouping expressions
* @return the modified query
*/
AbstractQuery<T> groupBy(Expression<?>... grouping);

* Specify the expressions that are used to form groups over
* the query results.
* Replaces the previous specified grouping expressions, if any.
* If no grouping expressions are specified, any previously
* added grouping expressions are simply removed.

* @param grouping 1list of zero or more grouping expressions

* @return the modified query

*/
AbstractQuery<T> groupBy(List<Expression<?>> grouping);

481

/**

* Specify a restriction over the groups of the query.

* Replaces the previous having restriction(s), if any.

* @param restriction a simple or compound boolean expression
* @return the modified query

*/
AbstractQuery<T> having(Expression<Boolean> restriction);

/**

* Specify restrictions over the groups of the query

* according the conjunction of the specified restriction

* predicates.

* Replaces the previously having added restriction(s), if any.
* If no restrictions are specified, any previously added

* restrictions are simply removed.

* @param restrictions zero or more restriction predicates

*

@return the modified query
*/
AbstractQuery<T> having(Predicate... restrictions);

~
*
*

Specify restrictions over the groups of the query

according the conjunction of the specified restriction
predicates.

Replaces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are simply removed.
@param restrictions a list of zero or more restriction predicates
@return the modified query

* @since 3.2

*/
AbstractQuery<T> having(List<Predicate> restrictions);

ECE I

~
*
*

Specify whether duplicate query results are eliminated.

A true value will cause duplicates to be eliminated.

A false value will cause duplicates to be retained.

If distinct has not been specified, duplicate results must

be retained.

@param distinct boolean value specifying whether duplicate
results must be eliminated from the query result or
whether they must be retained

@return the modified query

L R B R

*/
AbstractQuery<T> distinct(boolean distinct);

* Return the query roots. These are the roots that are
* defined for the {@link CriteriaQuery} or {@link Subquery}
* itself, including any subquery roots defined as a result of
* correlation. Returns an empty set if no roots have been
* defined. Modifications to the set do not affect the query.
* @return the set of query roots
*/
Set<Root<?>> getRoots();

/**

* Return the selection of the query, or null if no selection
* has been set.

* @return selection item

*/

Selection<T> getSelection();

/**

* Return a list of the grouping expressions. Returns empty
* list if no grouping expressions have been specified.
* Modifications to the list do not affect the query.

482

* @return the list of grouping expressions
*/
List<Expression<?>> getGrouplList();

/**

* Return the predicate that corresponds to the restriction(s)
* over the grouping items, or null if no restrictions have

* been specified.

* @return having clause predicate

*/

Predicate getGroupRestriction();

/**

* Return whether duplicate query results must be eliminated or
* retained.

* @return boolean indicating whether duplicate query results

* must be eliminated

*/

boolean isDistinct();

/**

* Return the result type of the query or subquery. If
* 3 result type was specified as an argument to the

* {@code createQuery} or {@code subquery} method, that
* type is returned. If the query was created using the
* {@code createTupleQuery} method, the result type is
* {@code Tuple}. Otherwise, the result type is

* {@code Object}.

* @return result type

*/

(lass<T> getResultType();

C.7. CollectionJoin

package jakarta.persistence.criteria;

import java.util.Collection;
import jakarta.persistence.metamodel.CollectionAttribute;

/**

*
*
*
*
*
*
*
*

*/

The {@code Collectionloin} interface is the type of the result of
joining to a collection over an association or element

collection that has been specified as a {@link java.util.Collection}.
@param <Z> the source type of the join

@param <E> the element type of the target {@code Collection}

@since 2.0

public interface CollectionJoin<Z, E>

extends Pluralloin<Z, Collection<E>, E> {

/**

* Modify the join to restrict the result according to the

* specified ON condition and return the join object.

* Replaces the previous ON condition, if any.

* @param restriction a simple or compound boolean expression
* @return the modified join object

* @since 2.1

*/
CollectionJoin<Z, E> on(Expression<Boolean> restriction);

/**

* Modify the join to restrict the result according to the

483

C.8.

484

* specified ON condition and return the join object.

* Replaces the previous ON condition, if any.

* @param restrictions zero or more restriction predicates
* @return the modified join object

* @since 2.1

*/

CollectionJoin<Z, E> on(Predicate... restrictions);

/**

* Return the metamodel representation for the collection

* attribute.

* @return metamodel type representing the {@code Collection} that is
* the target of the join

*/

CollectionAttribute<? super Z, E> getModel();

CommonAbstractCriteria

import jakarta.persistence.metamodel.EntityType;

import java.util.Set;

/**
The {@code CommonAbstractCriteria} interface defines functionality
that is common to both top-level criteria queries and subqueries as
well as to update and delete criteria operations.
It is not intended to be used directly in query construction.

*

*

*

*

*

* <p> Note that criteria queries and criteria update and delete operations
* are typed differently.

* Criteria queries are typed according to the query result type.

* Update and delete operations are typed according to the target of the
* ypdate or delete.

*
*

@since 2.1
*/
public interface CommonAbstractCriteria {

/**

* Create a subquery of the query.

* @param type the subquery result type
* @return subquery

*/

<U> Subquery<U> subquery(Class<U> type);

/**

* Create a subquery of the query.

* @param type the subquery result type

* @return subquery

*/

<U> Subquery<U> subquery(EntityType<U> type);

/**

* Return the predicate that corresponds to the where clause
* restriction(s), or null if no restrictions have been

* specified.

* @return where clause predicate

*/

Predicate getRestriction();

/**

* Return the parameters of the query. Returns empty set if
* there are no parameters.

* Modifications to the set do not affect the query.

* @return the query parameters
*/
Set<ParameterExpression<?>> getParameters();

C.9. CompoundSelection

/**
The {@code CompoundSelection} interface defines a compound
selection item (a tuple, array, or result of a constructor).

*
*
*
* @param <X> the type of the selection item

*

* @since 2.0

*/

public interface CompoundSelection<X> extends Selection<X> {}

C.10. Expression

package jakarta.persistence.criteria;

import java.util.Collection;

/**

* Type for query expressions.

*

* @param <T> the type of the expression
*

*

@since 2.0
*/
public interface Expression<T> extends Selection<T> {

/**

* (Create a predicate to test whether the expression is null.
* @return predicate testing whether the expression is null
*/

Predicate isNull();

/**

* Create a predicate to test whether the expression is

* not null.

* @return predicate testing whether the expression is not null
*/

Predicate isNotNull();

/**

* Create a predicate to test whether the expression is equal to
* the argument.

* @param value expression to be tested against

* @return predicate testing for equality

* @since 3.2

*/

Predicate equalTo(Expression<?> value);

* (reate a predicate to test whether the expression is equal to
* the argument.

* @param value value to be tested against

* @return predicate testing for equality

* @since 3.2

*/

Predicate equalTo(Object value);

485

* Create a predicate to test whether the expression is unequal
* to the argument.

* @param value expression to be tested against

* @return predicate testing for inequality

* @since 3.2

*/

Predicate notEqualTo(Expression<?> value);

/**

* Create a predicate to test whether the expression is unequal
* to the arqument.

* @param value value to be tested against

* @return predicate testing for inequality

* @since 3.2

*/

Predicate notEqualTo(Object value);

/**

* (Create a predicate to test whether the expression is a member
of the argument list.

* @param values values to be tested against

* @return predicate testing for membership

*/

Predicate in(Object... values);

*

/**

* Create a predicate to test whether the expression is a member
* of the argument list.

* @param values expressions to be tested against

* @return predicate testing for membership

*/

Predicate in(Expression<?>... values);

/**

* Create a predicate to test whether the expression is a member
* of the collection.

* @param values collection of values to be tested against

* @return predicate testing for membership

*/

Predicate in(Collection<?> values);

/**

* Create a predicate to test whether the expression is a member
* of the collection.

* @param values expression corresponding to collection to be

* tested against

* @return predicate testing for membership

*/

Predicate in(Expression<Collection<?>> values);

~
*
*

Perform a typecast upon the expression, returning a new
expression object.

Unlike {@link #cast(Class)}, this method does not cause
type conversion: the runtime type is not changed.
<p>Warning: may result in a runtime failure.
@param type intended type of the expression

@return new expression of the given type

@see ficast(Class)

EE R T

*/
<X> Expression<X> as(Class<X> type);
/**

* (Cast this expression to the specified type, returning a
* new expression object.
* Unlike {@link #as(Class)}, this method does

486

* result in a runtime type conversion.

* <p>Providers are required to support casting

* scalar expressions to {@link String}, and

* {@code String} expressions to {@link Integer},

* {@link Long}, {@link Float}, and {@link Double}.

* Support for typecasts between other basic types is
* not required.

* @param type a basic type

* @return a scalar expression of the given basic type
* @since 3.2

*/

<X> Expression<X> cast(Class<X> type);

C.11. Fetch

import jakarta.persistence.metamodel.Attribute;

/‘k*

Represents a join-fetched association or attribute.

*

*

* @param <Z> the source type of the fetch
* @param <X> the target type of the fetch
*
*

@since 2.0
*/

public interface Fetch<Z, X> extends FetchParent<Z, X> {

/**

* Return the metamodel attribute corresponding to the

* fetch join.

* @return metamodel attribute for the join
*/
Attribute<? super Z, 7> getAttribute();

/'k*

* Return the parent of the fetched item.
* @return fetch parent

*/

FetchParent<?, Z> getParent();

/**

* Return the join type used in the fetch join.

* @return join type
*/
JoinType getJoinType();

C.12. FetchParent

import jakarta.persistence.metamodel.PluralAttribute;
import jakarta.persistence.metamodel.SingularAttribute;

/**

Represents an element of the from clause which may

function as the parent of Fetches.

*

*

*

* @param <Z> the source type

* @param <X> the target type

*

* @since 2.0

*/

public interface FetchParent<Z, X> {

487

* Return the fetch joins that have been made from this type.
* Returns empty set if no fetch joins have been made from

* this type.

* Modifications to the set do not affect the query.

* @return fetch joins made from this type

*/

java.util.Set<Fetch<X, ?>> getFetches();

/**

* Create a fetch join to the specified single-valued attribute
* using an inner join.

* @param attribute target of the join

* @return the resulting fetch join

*/

<Y> Fetch<X, Y> fetch(SingularAttribute<? super X, Y> attribute);

* Create a fetch join to the specified single-valued attribute

* ysing the given join type.

* @param attribute target of the join

* @param jt join type

* @return the resulting fetch join

*/

<Y> Fetch<X, Y> fetch(SingularAttribute<? super X, Y> attribute, JoinType jt);

/**

* Create a fetch join to the specified collection-valued

* attribute using an inner join.

* @param attribute target of the join

* @return the resulting join

*/

<Y> Fetch<X, Y> fetch(PluralAttribute<? super X, ?, Y> attribute);

* Create a fetch join to the specified collection-valued
* attribute using the given join type.
* @param attribute target of the join
* @param jt join type

* @return the resulting join

*/

<Y> Fetch<X, Y> fetch(PluralAttribute<? super X, ?, Y> attribute, JoinType jt);

//String-based:

/**

* Create a fetch join to the specified attribute using an
* inner join.

* @param attributeName name of the attribute for the

* target of the join

* @return the resulting fetch join

* @throws IllegalArgumentException if attribute of the given
* name does not exist

*/

@SuppressWarnings("hiding")

<X, Y> Fetch<X, Y> fetch(String attributeName);

/**

* Create a fetch join to the specified attribute using
* the given join type.

* @param attributeName name of the attribute for the
* target of the join

* @param jt join type

* @return the resulting fetch join

*

@throws I1legalArgumentException if attribute of the given

488

* name does not exist

*/

@SuppressWarnings("hiding")

<X, Y> Fetch<X, Y> fetch(String attributeName, JoinType jt);

C.13. AbstractQuery

package jakarta.persistence.criteria;

import jakarta.persistence.metamodel.EntityType;

import jakarta.persistence.metamodel.SingularAttribute;
import jakarta.persistence.metamodel.CollectionAttribute;
import jakarta.persistence.metamodel.ListAttribute;
import jakarta.persistence.metamodel.MapAttribute;

import jakarta.persistence.metamodel.SetAttribute;

import java.util.Collection;
import java.util.list;
import java.util.Map;
import java.util.Set;

/**

¥ %k kX kX X X X X

*/

Represents a bound type, usually an entity that appears in
the from clause, but may also be an embeddable belonging to
an entity in the from clause.

<p> Serves as a factory for {@link Join}s of associations,
embeddables, and collections belonging to the type, and for
{@link Path}s of attributes belonging to the type.

@param <Z> the source type

@param <X> the target type

@since 2.0

@SuppressWarnings("hiding")
public interface From<Z, X> extends Path<X>, FetchParent<Z, X> {

/**

Return the joins that have been made from this bound type.
Returns empty set if no joins have been made from this
bound type.

Modifications to the set do not affect the query.

@return joins made from this type

* Xk X 3k

*/
Set<Join<X, ?>> getloins();

/**

* Whether the {@link From} object has been obtained as a result
* of correlation (use of a {@link Subquery#correlate} method).
* @return boolean indicating whether the object has been

* obtained through correlation

*/

boolean isCorrelated();

/**

* Returns the parent {@link From} object from which the correlated
* {@link From} object has been obtained through correlation (use

* of {@link Subquery#correlate} method).

* @return the parent of the correlated {@code From} object

* @throws IllegalStateException if the {@code From} object has

* not been obtained through correlation

*/

From<Z, X> getCorrelationParent();

489

490

/**

* Create and add an inner join to the given entity.
* @param entityClass the target entity class

* @return the resulting join

* @since 3.2

*/

<Y> Join<X, Y> join(Class<Y> entityClass);

/**

* Create and add a join to the given entity.

* @param entityClass the target entity class

* @param joinType join type

* @return the resulting join

* @since 3.2

*/

<Y> Join<X, Y> join(Class<Y> entityClass, JoinType joinType);

/**

* Create and add an inner join to the given entity.

* @param entity metamodel entity representing the join target
* @return the resulting join

* @since 3.2

*/

<Y> Join<X, Y> join(EntityType<Y> entity);

/**

* Create and add a join to the given entity.

* @param entity metamodel entity representing the join target
* @param joinType join type

* @return the resulting join

* @since 3.2

*/

<Y> Join<X, Y> join(EntityType<Y> entity, JoinType joinType);

/*'k

* Create an inner join to the specified single-valued

* attribute.

* @param attribute target of the join

* @return the resulting join

*/

<Y> Join<X, Y> join(SingularAttribute<? super X, Y> attribute);

/**

* Create a join to the specified single-valued attribute

* using the given join type.

* @param attribute target of the join

* @param jt join type

* @return the resulting join

*/

<Y> Join<X, Y> join(SingularAttribute<? super X, Y> attribute, JoinType jt);

/**

* Create an inner join to the specified {@link Collection}-valued

* attribute.

* @param collection target of the join

* @return the resulting join

*/

<Y> CollectionJoin<X, Y> join(CollectionAttribute<? super X, Y> collection);

/**

* Create an inner join to the specified {@link Set}-valued
* attribute.

* @param set target of the join

* @return the resulting join

*/

<Y> SetJoin<X, Y> join(SetAttribute<? super X, Y> set);

/**

* Create an inner join to the specified

* {@link List}-valued attribute.

* @param list target of the join

* @return the resulting join

*/

<Y> ListJoin<X, Y> join(ListAttribute<? super X, Y> list);

/**

* Create an inner join to the specified {@link Map}-valued

* attribute.

* @param map target of the join

* @return the resulting join

*/

<K, V> Maploin<X, K, V> join(MapAttribute<? super X, K, V> map);

* Create a join to the specified {@link Collection}-valued
* attribute using the given join type.
* @param collection target of the join
* @param jt join type

* @return the resulting join

*/

<Y> CollectionJoin<X, Y> join(CollectionAttribute<? super X, Y> collection, JoinType jt);

/**

* Create 3 join to the specified {@link Set}-valued attribute

* using the given join type.

* @param set target of the join

* @param jt join type

* @return the resulting join

*/

<Y> SetJoin<X, Y> join(SetAttribute<? super X, Y> set, JoinType jt);

* Create a join to the specified {@link List}-valued attribute

* using the given join type.

* @param list target of the join

* @param jt join type

* @return the resulting join

*/

<Y> ListJoin<X, Y> join(ListAttribute<? super X, Y> list, JoinType jt);

/**

* Create a join to the specified {@link Map}-valued attribute

* ysing the given join type.

* @param map target of the join

* @param jt join type

* @return the resulting join

*/

<K, V> MapJloin<X, K, V> join(MapAttribute<? super X, K, V> map, JoinType jt);

//String-based:

* Create an inner join to the specified attribute.

* @param attributeName name of the attribute for the

* target of the join

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
* name does not exist

<X, Y> Join<X, Y> join(String attributeName);

/**

* Create an inner join to the specified {@link Collection}-valued

491

attribute.
@param attributeName name of the attribute for the
target of the join
@return the resulting join
@throws I1legalArgumentException if attribute of the given
name does not exist

* 0% kX F X

*/
<X, Y> CollectionJoin<X, Y> joinCollection(String attributeName);

/'k*

* Create an inner join to the specified {@link Set}-valued

* attribute.

* @param attributeName name of the attribute for the

* target of the join

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
* name does not exist

*/

<X, Y> SetJoin<X, Y> joinSet(String attributeName);

/**

* Create an inner join to the specified {@link List}-valued
* attribute.

* @param attributeName name of the attribute for the

* target of the join

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
* name does not exist

*/

<X, Y> ListJoin<X, Y> joinList(String attributeName);

/**

* Create an inner join to the specified {@link Map}-valued

* attribute.

* @param attributeName name of the attribute for the

* target of the join

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
*

name does not exist

<X, K, V> Maploin<X, K, V> joinMap(String attributeName);

/**

* Create a join to the specified attribute using the given

* join type.

* @param attributeName name of the attribute for the

* target of the join

* @param jt join type

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
*

name does not exist
*/
<X, Y> Join<X, Y> join(String attributeName, JoinType jt);

/**

* Create a join to the specified {@link Collection}-valued

* attribute using the given join type.

* @param attributeName name of the attribute for the

* target of the join

* @param jt join type

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
*

name does not exist
*/
<X, Y> CollectionJoin<X, Y> joinCollection(String attributeName, JoinType jt);

/**

492

* Create a join to the specified {@link Set}-valued attribute
* using the given join type.

* @param attributeName name of the attribute for the

* target of the join

* @param jt join type

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given
* name does not exist

*/

<X, Y> SetJoin<X, Y> joinSet(String attributeName, JoinType jt);

/**

* Create a join to the specified {@link List}-valued attribute
* using the given join type.

* @param attributeName name of the attribute for the

* target of the join

* @param jt join type

* @return the resulting join

* @throws IllegalArgumentException if attribute of the given

* name does not exist

*/

<X, Y> ListJoin<X, Y> joinList(String attributeName, JoinType jt);

/**
* Create 3 join to the specified {@link Map}-valued attribute
* using the given join type.
* @param attributeName name of the attribute for the
* target of the join
* @param jt join type
* @return the resulting join
* @throws IllegalArgumentException if attribute of the given
* name does not exist
*/
<X, K, V> MapJoin<X, K, V> joinMap(String attributeName, JoinType jt);
}
C.14. Join

import jakarta.persistence.metamodel.Attribute;

/**

A join to an entity, embeddable, or basic type.

*

*

* @param <Z> the source type of the join
* @param <X> the target type of the join
*
*

@since 2.0
*/
public interface Join<Z, X> extends From<Z, X> {

* Modify the join to restrict the result according to the
* specified ON condition and return the join object.
* Replaces the previous ON condition, if any.
* @param restriction a simple or compound boolean expression
* @return the modified join object

* @since 2.1

*/

Join<Z, X> on(Expression<Boolean> restriction);

/**

Modify the join to restrict the result according to the
specified ON condition and return the join object.
Replaces the previous ON condition, if any.

@param restrictions zero or more restriction predicates

* Xk X

493

* @return the modified join object

* @since 2.1

*/

Join<Z, X> on(Predicate... restrictions);

* Return the predicate that corresponds to the ON

* restriction(s) on the join, or null if no ON condition
* has been specified.

* @return the ON restriction predicate

* @since 2.1

*/

Predicate getOn();

/**

* Return the metamodel attribute representing the join

* target, if any, or null if the target of the join is an
* entity type.

* @return metamodel attribute or null

*/
Attribute<? super Z, 7> getAttribute();

/**

* Return the parent of the join.
* @return join parent

*/

From<?, Z> getParent();

/**

* Return the join type.
* @return join type

*/

JoinType getJoinType();

C.15. JoinType

/**

Defines the three varieties of join.

*
*
* <p>Support for {@link #RIGHT} outer joins is not required. Applications
* which make use of right joins might not be portable between providers or
* between SQL databases.

*

*

@since 2.0
*/
public enum JoinType {

/**

* Inner join.
*/

INNER,

/**

* Left outer join.
*/

LEFT,

/**

* Right outer join.
*/

RIGHT,

494

C.16. ListJoin

package jakarta.persistence.criteria;

import java.util.List;
import jakarta.persistence.metamodel.ListAttribute;

/**

The {@code ListJoin} interface is the type of the result of
joining to a collection over an association or element
collection that has been specified as a {@link java.util.List}.

*
*
*
*
* @param <Z> the source type of the join
* @param <E> the element type of the target List
*
* @since 2.0
*/
public interface ListJoin<Z, E>

extends PluralJoin<Z, List<E>, E> {

* Modify the join to restrict the result according to the
* specified ON condition and return the join object.
* Replaces the previous ON condition, if any.
* @param restriction a simple or compound boolean expression
* @return the modified join object

* @since 2.1

*/

ListJoin<Z, E> on(Expression<Boolean> restriction);

* Modify the join to restrict the result according to the
* specified ON condition and return the join object.
* Replaces the previous ON condition, if any.
* @param restrictions zero or more restriction predicates
* @return the modified join object

* @since 2.1

*/

ListJoin<Z, E> on(Predicate... restrictions);

/**

* Return the metamodel representation for the list attribute.
* @return metamodel type representing the {@code List} that is
* the target of the join

*/

ListAttribute<? super Z, E> getModel();

* Create an expression that corresponds to the index of
* the object in the referenced association or element

* collection.

* This method must only be invoked upon an object that
* represents an association or element collection for
* which an order column has been defined.

* @return expression denoting the index

Expression<Integer> index();

C.17. LocalDateField

import java.time.localDate;

/**

495

Each instance represents a type of field which can be
extracted from a {@link LocalDate}.

*
*
*
* @param <N> the resulting type of the extracted value

*

* @since 3.2

*/

public class LocalDateField<N> implements TemporalField<N, LocalDate> {

private final String name;

private LocalDateField(String name) {
this.name = name;

}

@override
public String toString() {
return name;

}

/**
* The calendar year.
*/
public static final LocalDateField<Integer> YEAR = new LocalDateField<>("year");
/**
* The calendar quarter, numbered from 1 to 4.
*
/
public static final LocalDateField<Integer> QUARTER = new LocalDateField<>("quarter");
/*k*k
* The calendar month of the year, numbered from 1.
*
/
public static final LocalDateField<Integer> MONTH = new LocalDateField<>("month");
/**
* The IS0-8601 week number.
*/
public static final LocalDateField<Integer> WEEK = new LocalDateField<>("week");
/**
* The calendar day of the month, numbered from 1.
*/
public static final LocalDateField<Integer> DAY = new LocalDateField<>("day");

C.18. LocalDateTimeField

import java.time.lLocalDate;
import java.time.LocalDateTime;
import java.time.localTime;

/**
Each instance represents a type of field which can be
extracted from a {@link LocalDateTime}.

*

*

*

* @param <N> the resulting type of the extracted value

*

* @since 3.2

*/

public class LocalDateTimeField<N> implements TemporalField<N, LocalDateTime> {
private final String name;

private LocalDateTimeField(String name) {
this.name = name;

}

@0verride

496

public

String toString() {

return name;

}

/**

* The

*/
public
/**

* The

*/
public
/**

* The

*/
public
/**

* The

*/
public
/**

* The

*/
public

/**

* The

*/
public
/**

* The

*/
public
/**

* The

calendar year.

static final LocalDateTimeField<Integer> YEAR = new LocalDateTimeField<>("year");
calendar quarter, numbered from 1 to 4.

static final LocalDateTimeField<Integer> QUARTER = new LocalDateTimeField<>("quarter");
calendar month of the year, numbered from 1.

static final LocalDateTimeField<Integer> MONTH = new LocalDateTimeField<>("month");
1S0-8601 week number.

static final LocalDateTimeField<Integer> WEEK = new LocalDateTimeField<>("week");
calendar day of the month, numbered from 1.

static final LocalDateTimeField<Integer> DAY = new LocalDateTimeField<>("day");

hour of the day in 24-hour time, numbered from 0 to 23.

static final LocalDateTimeField<Integer> HOUR = new LocalDateTimeField<>("hour");
minute of the hour, numbered from @ to 59.

static final LocalDateTimeField<Integer> MINUTE = new LocalDateTimeField<>("minute");

second of the minute, numbered from @ to 59, including a fractional

* part representing fractions of a second

*/
public

/**
* The
*/
public
/**
* The
*/
public

static final LocalDateTimeField<Double> SECOND = new LocalDateTimeField<>("second");

{@linkplain LocalDate date} part of a datetime.
static final LocalDateTimeField<LocalDate> DATE = new LocalDateTimeField<>("date");
{@linkplain LocalTime time} part of a datetime.

static final LocalDateTimeField<LocalTime> TIME = new LocalDateTimeField<>("time");

C.19. LocalTimeField

import java.time.lLocalTime;

/**

Each instance represents a type of field which can be
extracted from a {@link LocalTime}.

*
*
*
* @param <N> the resulting type of the extracted value
*
*

@since 3.2

*/

public class LocalTimeField<N> implements TemporalField<N, LocalTime> {

private final String name;

497

private LocalTimeField(String name) {
this.name = name;

}

@0verride
public String toString() {
return name;

}

%

/* The hour of the day in 24-hour time, numbered from @ to 23.

*

puglic static final LocalTimeField<Integer> HOUR = new LocalTimeField<>("hour");

**

/* The minute of the hour, numbered from @ to 59.

*

puglic static final LocalTimeField<Integer> MINUTE = new LocalTimeField<>("minute");
**

/* The second of the minute, numbered from @ to 59, including a fractional

* part representing fractions of a second

*

puglic static final LocalTimeField<Double> SECOND = new LocalTimeField<>("second");

C.20. MapJoin

498

import java.util.Map;
import jakarta.persistence.metamodel.MapAttribute;

/**

*
*
*
*
*
*
*
*
*

*/

The {@code MapJoin} interface is the type of the result of
joining to a collection over an association or element
collection that has been specified as a {@link java.util.Map}.

@param <Z> the source type of the join
@param <K> the type of the target Map key
@param <V> the type of the target Map value

@since 2.0

public interface MapJoin<Z, K, V>

extends PluralJoin<Z, Map<K, V>, V> {

/**

Modify the join to restrict the result according to the
specified ON condition and return the join object.

Replaces the previous ON condition, if any.

@param restriction a simple or compound boolean expression
@return the modified join object

@since 2.1

* Xk Xk *

*/
MapJoin<Z, K, V> on(Expression<Boolean> restriction);

/**
* Modify the join to restrict the result according to the
* specified ON condition and return the join object.
* Replaces the previous ON condition, if any.
* @param restrictions zero or more restriction predicates
* @return the modified join object
* @since 2.1
*/
MapJloin<Z, K, V> on(Predicate... restrictions);

/**
* Return the metamodel representation for the map attribute.

* @return metamodel type representing the {@code Map} that is
* the target of the join

*/
MapAttribute<? super Z, K, V> getModel();

/**

* Create a path expression that corresponds to the map key.
* @return path corresponding to map key

*/

Path<K> key();

/**

* Create a path expression that corresponds to the map value.
* This method is for stylistic use only: it just returns this.
* @return path corresponding to the map value

*/

Path<V> value();

/**

* (Create an expression that corresponds to the map entry.
* @return expression corresponding to the map entry

*/

Expression<Map.Entry<K, V>> entry();

C.21. Nulls

/**

Specifies the precedence of null values within query result sets.

*

*

* @see CriteriaBuilder#asc(Expression, Nulls)

* @see CriteriaBuilder#desc(Expression, Nulls)
*

*

@since 3.2
*/
public enum Nulls {
/**
* Null precedence not specified.
*/
NONE,
/**
* Null values occur at the beginning of the result set.
*/
FIRST,
/**
* Null values occur at the end of the result set.
*/
LAST

C.22. Order

/**

* An object that defines an ordering over the query results.
*

* @since 2.0
*/
public interface Order {

/*'k

* Switch the ordering.
* @return a new {@code Order} instance with the reversed ordering
*/

499

Order reverse();

/**

* Whether ascending ordering is in effect.

* @return boolean indicating whether ordering is ascending
*/

boolean isAscending();

/**

* Return the precedence of null values.

* @return the {@linkplain Nulls precedence of null values}
* @since 3.2

*/

Nulls getNullPrecedence();

/**

* Return the expression that is used for ordering.
* @return expression used for ordering

*/

Expression<?> getExpression();

}

C.23. ParameterExpression

import jakarta.persistence.Parameter;

/'k*

* Type of criteria query parameter expressions.

*

* @param <T> the type of the parameter expression
*

*

@since 2.0
*/
public interface ParameterExpression<T> extends Parameter<T>, Expression<T> {}

C.24. Path

import jakarta.persistence.metamodel.PluralAttribute;
import jakarta.persistence.metamodel.SingularAttribute;
import jakarta.persistence.metamodel.Bindable;

import jakarta.persistence.metamodel.MapAttribute;

/**

* Represents a simple or compound attribute path from a

* bound type or collection, and is a "primitive" expression.
*

* @param <X> the type referenced by the path

*

* @since 2.0

*/

public interface Path<X> extends Expression<X> {

/**

* Return the bindable object that corresponds to the path
* expression.

* @return bindable object corresponding to the path

*/

Bindable<X> getModel();

/**

* Return the parent "node" in the path or null if no parent.
* @return parent

*/

500

Path<?> getParentPath();

/**

* Create a path corresponding to the referenced

* single-valued attribute.

* @param attribute single-valued attribute

* @return path corresponding to the referenced attribute
*/
<Y> Path<Y> get(SingularAttribute<? super X, Y> attribute);

/**

* Create a path corresponding to the referenced

* collection-valued attribute.

* @param collection collection-valued attribute

* @return expression corresponding to the referenced attribute

*/

<E, C extends java.util.Collection<E>> Expression<C> get(PluralAttribute<? super X, C, E> collection);

/**

* (Create a path corresponding to the referenced

* map-valued attribute.

* @param map map-valued attribute

* @return expression corresponding to the referenced attribute

*/

<K, V, M extends java.util.Map<K, V>> Expression<M> get(MapAttribute<? super X, K, V> map);

/'k*

* (Create an expression corresponding to the type of the path.
* @return expression corresponding to the type of the path
*/

Expression<Class<? extends X>> type();

//String-based:

~
*
*

Create a path corresponding to the referenced attribute.

<p> Note: Applications using the string-based API may need to
specify the type resulting from the {@link #get} operation in
order to avoid the use of {@code Path} variables.

<p>For example:
{@snippet :
CriteriaQuery<Person> q = cb.createQuery(Person.class);
Root<Person> p = q.from(Person.class);
q.select(p)

.where(cb.isMember("joe",

p.<Set<String>>get("nicknames")));

}
<p>rather than:
{@snippet :
CriteriaQuery<Person> q = cb.createQuery(Person.class);
Root<Person> p = q.from(Person.class);
Path<Set<String>> nicknames = p.get("nicknames");
q.select(p)

.where(cb.isMember("joe", nicknames));

}

@param attributeName name of the attribute

@return path corresponding to the referenced attribute

@throws I1legalStateException if invoked on a path that
corresponds to a basic type

@throws I1legalArgumentException if attribute of the given
name does not otherwise exist

ECE R . T R R I R R I N R S I R I

*/
<Y> Path<Y> get(String attributeName);

501

C.25. Pluralloin

import jakarta.persistence.metamodel.PluralAttribute;

/**
The {@code Pluralloin} interface defines functionality

that is common to joins to all collection types. It is
not intended to be used directly in query construction.

*

*

*

*

* @param <Z> the source type

* @param <C> the collection type

* @param <E> the element type of the collection
*

* @since 2.0

*/

public interface Pluralloin<Z, C, E> extends Join<Z, E> {

/**

* Return the metamodel representation for the collection-valued
* attribute corresponding to the join.

* @return metamodel collection-valued attribute corresponding

* to the target of the join

*/

PluralAttribute<? super Z, C, E> getModel();

C.26. Predicate

import java.util.List;

/**

* The type of a simple or compound predicate: a conjunction or
* disjunction of restrictions.

* A simple predicate is considered to be a conjunction with a

* single conjunct.
*

*

@since 2.0
*/
public interface Predicate extends Expression<Boolean> {

enum BooleanOperator {
AND, OR
}

/**

* Return the boolean operator for the predicate.

* If the predicate is simple, this is {@code AND}.
* @return boolean operator for the predicate

*/

BooleanOperator getOperator();

/**

* Whether the predicate has been created from another
* predicate by applying {@link Predicate#not()}

* or by calling {@link CriteriaBuilder#not}.

* @return boolean indicating if the predicate is

* a negated predicate

*/

boolean isNegated();

/**

502

Return the top-level conjuncts or disjuncts of the
predicate. Returns empty list if there are no top-level
conjuncts or disjuncts of the predicate.

Modifications to the 1list do not affect the query.
@return list of boolean expressions forming the predicate

* X kX

*/
List<Expression<Boolean>> getExpressions();

/**

* Create a negation of the predicate.
* @return negated predicate
*
/
Predicate not();

C.27. Root

import jakarta.persistence.metamodel.EntityType;

/**
* A root type in the from clause.
Query roots always reference entities.

*
*
* @param <X> the entity type referenced by the root
*
*

@since 2.0
*/
public interface Root<X> extends From<X, X> {

/**

* Return the metamodel entity corresponding to the root.
* @return metamodel entity corresponding to the root

*/

EntityType<X> getModel();

C.28. Selection

import jakarta.persistence.TupleElement;
import java.util.List;

/**
The {@code Selection} interface defines an item that is to be
returned in a query result.

*
*
*
* @param <X> the type of the selection item

*

* @since 2.0

*/

public interface Selection<X> extends TupleElement<X> {

/**

Assigns an alias to the selection item.

Once assigned, an alias cannot be changed or reassigned.
Returns the same selection item.

@param name alias

@return selection item

* 0% kX *

*/
Selection<X> alias(String name);

/'k*
* Whether the selection item is a compound selection.

503

* @return boolean indicating whether the selection is a compound
* selection

*/

boolean isCompoundSelection();

/**

* Return the selection items composing a compound selection.
* Modifications to the list do not affect the query.

* @return list of selection items

* @throws IllegalStateException if selection is not a

* compound selection

*/

List<Selection<?>> getCompoundSelectionItems();

C.29. SetJoin

import java.util.Set;
import jakarta.persistence.metamodel.SetAttribute;

/**

The {@code SetJoin} interface is the type of the result of
joining to a collection over an association or element
collection that has been specified as a {@link java.util.Set}.

*
*
*
*
* @param <Z> the source type of the join

* @param <E> the element type of the target {@code Set}

*

* @since 2.0

*/

public interface SetJoin<Z, E> extends Pluralloin<Z, Set<E>, E> {

/**

* Modify the join to restrict the result according to the

* specified ON condition and return the join object.

* Replaces the previous ON condition, if any.

* @param restriction a simple or compound boolean expression
* @return the modified join object

* @since 2.1

*/

SetJoin<Z, E> on(Expression<Boolean> restriction);

* Modify the join to restrict the result according to the
* specified ON condition and return the join object.

* Replaces the previous ON condition, if any.

* @param restrictions zero or more restriction predicates
* @return the modified join object

* @since 2.1

*/

SetJoin<Z, E> on(Predicate... restrictions);

/'k*

* Return the metamodel representation for the set attribute.
* @return metamodel type representing the {@code Set} that is
* the target of the join

*/

SetAttribute<? super Z, E> getModel();

C.30. Subquery

package jakarta.persistence.criteria;

504

import java.util.List;
import java.util.Set;

/**
*
*
*
*
*
*
*
*

*/

public interface Subquery<T> extends AbstractQuery<T>, Expression<T> {

The
spec

<p>A
@par

@sin
/**
*
*
*
*
*
*

*/
Sub

/**

L R T

*/
Sub

~
*
*

E T I T

*/
Sub

~
*
*

L T T

*/
Sub
/**

*

*

{@code Subquery} interface defines functionality that is
ific to subqueries.

subquery has an expression as its selection item.
am <T> the type of the selection item.

ce 2.0

Specify the item that is to be returned as the subquery
result.

Replaces the previously specified selection, if any.
@param expression expression specifying the item that
is to be returned as the subquery result

@return the modified subquery

query<T> select(Expression<T> expression);

Modify the subquery to restrict the result according

to the specified boolean expression.

Replaces the previously added restriction(s), if any.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restriction a simple or compound boolean expression
@return the modified subquery

query<T> where(Expression<Boolean> restriction);

Modify the subquery to restrict the result according

to the conjunction of the specified restriction predicates.
Replaces the previously added restriction(s), if any.

If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions zero or more restriction predicates
@return the modified subquery

query<T> where(Predicate... restrictions);

Modify the query to restrict the query result according

to the conjunction of the specified restriction predicates.
Replaces the previously added restriction(s), if any.

If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions a list of zero or more restriction predicates

@return the modified query
@since 3.2

query<T> where(List<Predicate> restrictions);

Specify the expressions that are used to form groups over
the subquery results.

505

506

Replaces the previous specified grouping expressions, if any.
If no grouping expressions are specified, any previously
added grouping expressions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param grouping zero or more grouping expressions

@return the modified subquery

L T

*/
Subquery<T> groupBy(Expression<?>... grouping);

~
*
*

Specify the expressions that are used to form groups over
the subquery results.

Replaces the previous specified grouping expressions, if any.
If no grouping expressions are specified, any previously
added grouping expressions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param grouping 1list of zero or more grouping expressions
@return the modified subquery

* % ¥k kX X *

*/
Subquery<T> groupBy(List<Expression<?>> grouping);

/**

Specify a restriction over the groups of the subquery.
Replaces the previous having restriction(s), if any.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restriction a simple or compound boolean expression
@return the modified subquery

* X kX * X

*/
Subquery<T> having(Expression<Boolean> restriction);

~
*
*

Specify restrictions over the groups of the subquery
according the conjunction of the specified restriction
predicates.

Replaces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions zero or more restriction predicates
@return the modified subquery

ECEE I R T N

*/
Subquery<T> having(Predicate... restrictions);

~
*
*

Specify restrictions over the groups of the query

according the conjunction of the specified restriction
predicates.

Replaces the previously added having restriction(s), if any.
If no restrictions are specified, any previously added
restrictions are simply removed.

This method only overrides the return type of the
corresponding {@code AbstractQuery} method.

@param restrictions a list of zero or more restriction predicates
@return the modified query

* @since 3.2

*/

Subquery<T> having(List<Predicate> restrictions);

L I S R

*

/**

Specify whether duplicate query results are eliminated.

A true value will cause duplicates to be eliminated.

A false value will cause duplicates to be retained.

If distinct has not been specified, duplicate results must

E

* be retained.

* This method only overrides the return type of the

* corresponding {@code AbstractQuery} method.

* @param distinct boolean value specifying whether duplicate
* results must be eliminated from the subquery result or
* whether they must be retained

* @return the modified subquery.

*/

Subquery<T> distinct(boolean distinct);

/**

* Create a subquery root correlated to a root of the
* enclosing query.

* @param parentRoot a root of the containing query
* @return subquery root

*/

<Y> Root<Y> correlate(Root<Y> parentRoot);

/**

* Create a subquery join object correlated to a join object
* of the enclosing query.

* @param parentJoin join object of the containing query

* @return subquery join

*/

<X, Y> Join<X, Y> correlate(Join<X, Y> parentJoin);

/'k*

* (Create a subquery collection join object correlated to a

* collection join object of the enclosing query.

* @param parentCollection join object of the containing query

* @return subquery join

*/
<X, Y> CollectionJoin<X, Y> correlate(Collectionloin<X, Y> parentCollection);

/**

* (Create a subquery set join object correlated to a set join
* object of the enclosing query.

* @param parentSet join object of the containing query

* @return subquery join

*/

<X, Y> SetJoin<X, Y> correlate(SetJoin<X, Y> parentSet);

/**

* Create a subquery list join object correlated to a list join
* object of the enclosing query.

* @param parentList join object of the containing query

* @return subquery join

*/

<X, Y> ListJoin<X, Y> correlate(ListJoin<X, Y> parentlist);

/**

* Create a subquery map join object correlated to a map join

* object of the enclosing query.

* @param parentMap join object of the containing query

* @return subquery join

*/

<X, K, V> MapJloin<X, K, V> correlate(MapJoin<X, K, V> parentMap);

/**

* Return the query of which this is a subquery.
* This must be a CriteriaQuery or a Subquery.

* @return the enclosing query or subquery

*/
AbstractQuery<?> getParent();

/**

* Return the query of which this is a subquery.

507

* This may be a CriteriaQuery, Criterialpdate, CriteriaDelete,
* or a Subquery.

* @return the enclosing query or subquery

* @since 2.1

*/

CommonAbstractCriteria getContainingQuery();

/'k*

* Return the selection expression.

* @return the item to be returned in the subquery result
*/

Expression<T> getSelection();

/*'k

Return the correlated joins of the subquery.
Returns empty set if the subquery has no correlated
joins.

Modifications to the set do not affect the query.
@return the correlated joins of the subquery

* 0% kX *

*/
Set<Join<?, 7>> getCorrelatedJoins();

C.31. TemporalField

508

import java.time.temporal.Temporal;

/**

* Each instance represents a type of field which can be
* extracted from a date, time, or datetime.

*

* @param <N> the resulting type of the extracted value

* @param <T> the temporal type (date, time, or datetime)
*

* @see LocalDateField

* @see LocalTimeField

* @see LocalDateTimeField

* @see CriteriaBuilder#textract(TemporalField, Expression)
*

* @since 3.2

*/

public interface TemporalField<N,T extends Temporal> {}

Appendix D: Metamodel API Interfaces

The following APIs are defined in the package jakarta.persistence.metamodel.

D.1. Metamodel

package jakarta.persistence.metamodel;

import java.util.Set;

/**

* Provides access to the metamodel of persistent entities in the
* persistence unit.

*

* @since 2.0

*/

public interface Metamodel {

/**

Return the metamodel entity type representing the entity.
@param entityName the name of the represented entity
@return the metamodel entity type

@throws IllegalArgumentException if not an entity

@see jakarta.persistence.Entity#name

@since 3.2

* ok * ok F *

*/
EntityType<?> entity(String entityName);

/**

* Return the metamodel entity type representing the entity.
* @param cls the type of the represented entity

* @return the metamodel entity type

* @throws IllegalArgumentException if not an entity

*/

<X> EntityType<X> entity(Class<X> cls);

/**

* Return the metamodel managed type representing the

* entity, mapped superclass, or embeddable class.

* @param cls the type of the represented managed class

* @return the metamodel managed type

* @throws IllegalArgumentException if not a managed class
*/

<X> ManagedType<X> managedType(Class<X> cls);

/'k*

* Return the metamodel embeddable type representing the

* embeddable class.

* @param cls the type of the represented embeddable class

* @return the metamodel embeddable type

* @throws IllegalArgumentException if not an embeddable class
*/

<X> EmbeddableType<X> embeddable(Class<X> cls);

/**

* Return the metamodel managed types.
* @return the metamodel managed types
*/

Set<ManagedType<?>> getManagedTypes();

/**
* Return the metamodel entity types.
* @return the metamodel entity types
*/

509

Set<EntityType<?>> getEntities();

/**

* Return the metamodel embeddable types.

* Returns am empty set if there are no embeddable types.
* @return the metamodel embeddable types

*/

Set<EmbeddableType<?>> getEmbeddables();

D.2. StaticMetamodel

package jakarta.persistence.metamodel;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

* The {@code StaticMetamodel} annotation specifies that the class is
* 3 metamodel class that represents the entity, mapped superclass,

* or embeddable class designated by the {@link #value} element.
*
*

@since 2.0
*/
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
public @interface StaticMetamodel {

/**
* (lass being modelled by the annotated class.
*/
(lass<?> value();
}
D.3. Attribute
/**
* Represents an attribute of a Java type.
*
* @param <X> The represented type that contains the attribute
* @param <Y> The type of the represented attribute
*
* @since 2.0
*/

public interface Attribute<X, Y> {
enum PersistentAttributeType {

/** Many-to-one association */
MANY_TO_ONE,

/** One-to-one association */
ONE_TO_ONE,

/** Basic attribute */
BASIC,

/** Embeddable class attribute */
EMBEDDED,

/** Many-to-many association */

510

MANY_TO_MANY,

/** One-to-many association */
ONE_TO_MANY,

/** Element collection */
ELEMENT_COLLECTION
}

/'k*

* Return the name of the attribute.
* @return name

*/
String getName();

/*'k

* Return the persistent attribute type for the attribute.
* @return persistent attribute type

*/

PersistentAttributeType getPersistentAttributeType();

/**

* Return the managed type representing the type in which
* the attribute was declared.

* @return declaring type

*/
ManagedType<X> getDeclaringType();

/**

* Return the Java type of the represented attribute.
* @return Java type

*/

(lass<Y> getJavaType();

/*'k

* Return the {@link java.lang.reflect.Member} for the

* represented attribute.

* @return corresponding {@link java.lang.reflect.Member}
*/

java.lang.reflect.Member getJavaMember();

/**

* Is the attribute an association.

* @return boolean indicating whether the attribute
* corresponds to an association

*/

boolean isAssociation();

/**

* Is the attribute collection-valued (represents a

* {@code Collection}, {@code Set}, {@code List}, or

* {@code Map}).

* @return boolean indicating whether the attribute is
* collection-valued

*/

boolean isCollection();

D.4. BasicType

/**

* An instance of {@code BasicType} represents a

* {@linkplain jakarta.persistence.Basic basic type}

* (possibly an {@linkplain jakarta.persistence.Enumerated

* enumerated}, {@linkplain jakarta.persistence.Lob LOB}, or

511

* {@linkplain jakarta.persistence.Temporal temporal} type).
*

* @param <X> The represented basic type

*

* @since 2.0

*/
public interface BasicType<X> extends Type<X> {}

D.5. Bindable

512

import jakarta.persistence.criteria.Path;

/**

* An instances of the type {@code Bindable} represents an object
* or attribute type that can be bound into a {@link Path Path}.
@param <T> The type of the represented object or attribute

@since 2.0

* 0% kX *

*/
public interface Bindable<T> {

enum BindableType {

/**

* Single-valued attribute type.
*

* @see SingularAttribute

*/

SINGULAR_ATTRIBUTE,

/**

* Multivalued attribute type, that is, a collection.
*

* @see PluralAttribute

*/

PLURAL_ATTRIBUTE,

/**

* Entity type.
*

* @see EntityType
*/
ENTITY_TYPE

}

/**

* Return the bindable type of the represented object.
* @return bindable type

*/

BindableType getBindableType();

/'k*

* Return the Java type of the represented object.

If the bindable type of the object is {@code PLURAL_ATTRIBUTE},
the Java element type is returned. If the bindable type is
{@code SINGULAR_ATTRIBUTE} or {@code ENTITY_TYPE},

the Java type of the

represented entity or attribute is returned.

* @return Java type

*/

(lass<T> getBindableJavaType();

L I

D.6. CollectionAttribute

/**

* Instances of the type {@code CollectionAttribute} represent
persistent {@link java.util.Collection}-valued attributes.

*

*

* @param <X> The type the represented Collection belongs to
* @param <E> The element type of the represented Collection
*
*
*

@since 2.0

*/
public interface CollectionAttribute<X, E>
extends PluralAttribute<X, java.util.Collection<E>, E> {}

D.7. EmbeddableType

/**

* An instance of {@code EmbeddableType} represents an
* {@linkplain jakarta.persistence.Embeddable embeddable}
* type.

*

* @param <X> The represented embeddable type.

*

* @since 2.0
*/
public interface EmbeddableType<X> extends ManagedType<X> {}

D.8. EntityType

/**

* An instance of {@code EntityType} represents
* an {@linkplain jakarta.persistence.Entity entity}

* type.

*

* @param <X> The represented entity type.
*

*

@since 2.0
*/
public interface EntityType<X>
extends IdentifiableType<X>, Bindable<X>{

/**

* Return the entity name.
* @return entity name

*/

String getName();

D.9. IdentifiableType

import java.util.Set;

An instance of the type {@code IdentifiableType} represents an
entity or mapped superclass type.

@param <X> The represented entity or mapped superclass type.

@since 2.0

513

514

*

*/

public interface IdentifiableType<X> extends ManagedType<X> {

/**

* Return the attribute that corresponds to the id attribute of

the entity or mapped superclass.

@param type the type of the represented id attribute

@return id attribute

@throws IllegalArgumentException if id attribute of the given
type is not present in the identifiable type or if
the identifiable type has an id class

ECIE

*/
<Y> SingularAttribute<? super X, Y> getId(Class<Y> type);

/**

* Return the attribute that corresponds to the id attribute
* declared by the entity or mapped superclass.

* @param type the type of the represented declared

* id attribute

* @return declared id attribute

* @throws IllegalArgumentException if id attribute of the given
* type is not declared in the identifiable type or if

* the identifiable type has an id class

*/

<Y> SingularAttribute<X, Y> getDeclaredId(Class<Y> type);

/**
* Return the attribute that corresponds to the version
attribute of the entity or mapped superclass.
@param type the type of the represented version attribute
@return version attribute
@throws I1legalArgumentException if version attribute of the
given type is not present in the identifiable type

* 0% kX *

*/
<Y> SingularAttribute<? super X, Y> getVersion(Class<Y> type);

* Return the attribute that corresponds to the version

* attribute declared by the entity or mapped superclass.

* @param type the type of the represented declared version

* attribute

* @return declared version attribute

* @throws IllegalArqgumentException if version attribute of the
* type is not declared in the identifiable type

<Y> SingularAttribute<X, Y> getDeclaredVersion(Class<Y> type);

/**

* Return the identifiable type that corresponds to the most

* specific mapped superclass or entity extended by the entity
* or mapped superclass.

* @return supertype of identifiable type or null if no

* such supertype

*/

IdentifiableType<? super X> getSupertype();

* Whether the identifiable type has a single id attribute.

* Returns true for a simple id or embedded id; returns false
* for an idclass.

* @return boolean indicating whether the identifiable

* type has a single id attribute

boolean hasSingleIdAttribute();

/**

* Whether the identifiable type has a version attribute.
* @return boolean indicating whether the identifiable

* type has a version attribute

*/

boolean hasVersionAttribute();

* Return the attributes corresponding to the id class of the
* jdentifiable type.

* @return id attributes

* @throws IllegalArgumentException if the identifiable type
* does not have an id class

Set<SingularAttribute<? super X, ?>> getIdClassAttributes();

/*'k

* Return the type that represents the type of the id.
* @return type of id

*/

Type<?> getIdType();

D.10. ListAttribute

/**

* Instances of the type {@code ListAttribute} represent persistent
{@link java.util.List}-valued attributes.

*

*

* @param <X> The type the represented List belongs to
* @param <E> The element type of the represented List
*
*
*

@since 2.0

*/
public interface ListAttribute<X, E>
extends PluralAttribute<X, java.util.lList<E>, E> {}

D.11. ManagedType

import java.util.Set;

Instances of the type {@code ManagedType} represent entity, mapped
superclass, and embeddable types.

*
*
*
* @param <X> The represented type.
*
* @since 2.0

*

public interface ManagedType<X> extends Type<X> {

/**

* Return the attributes of the managed type.
* @return attributes of the managed type

*/

Set<Attribute<? super X, 7>> getAttributes();

/**

* Return the attributes declared by the managed type.

* Returns empty set if the managed type has no declared
* attributes.

* @return declared attributes of the managed type

515

*/
Set<Attribute<X, ?>> getDeclaredAttributes();

/**

* Return the single-valued attribute of the managed

* type that corresponds to the specified name and Java type.

* @param name the name of the represented attribute

* @param type the type of the represented attribute

* @return single-valued attribute with given name and type

* @throws IllegalArgumentException if attribute of the given

* name and type is not present in the managed type

*/

<Y> SingularAttribute<? super X, Y> getSingularAttribute(String name, Class<Y> type);

/**

* Return the single-valued attribute declared by the
* managed type that corresponds to the specified name and

* Java type.

* @param name the name of the represented attribute

* @param type the type of the represented attribute

* @return declared single-valued attribute of the given

* name and type

* @throws IllegalArgumentException if attribute of the given

* name and type is not declared in the managed type

*/

<Y> SingularAttribute<X, Y> getDeclaredSingularAttribute(String name, Class<Y> type);

/**

* Return the single-valued attributes of the managed type.

* Returns empty set if the managed type has no single-valued
* attributes.

* @return single-valued attributes

*/

Set<SingularAttribute<? super X, 7>> getSingularAttributes();

/**

* Return the single-valued attributes declared by the managed
* type.

* Returns empty set if the managed type has no declared

* single-valued attributes.

* @return declared single-valued attributes

*/

Set<SingularAttribute<X, ?>> getDeclaredSingularAttributes();

/**

* Return the Collection-valued attribute of the managed type

* that corresponds to the specified name and Java element type.

* @param name the name of the represented attribute

* @param elementType the element type of the represented

* attribute

* @return CollectionAttribute of the given name and element

* type

* @throws I1legalArgumentException if attribute of the given
name and type is not present in the managed type

*/

<E> CollectionAttribute<? super X, E> getCollection(String name, Class<E> elementType);

~
*
*

Return the Collection-valued attribute declared by the
managed type that corresponds to the specified name and Java
element type.
@param name the name of the represented attribute
@param elementType the element type of the represented
attribute
@return declared {@code CollectionAttribute} of the given name and
element type
@throws I1legalArgumentException if attribute of the given

ECIE I T

516

* name and type is not declared in the managed type
*/
<E> CollectionAttribute<X, E> getDeclaredCollection(String name, Class<E> elementType);

/**

* Return the Set-valued attribute of the managed type that

* corresponds to the specified name and Java element type.

* @param name the name of the represented attribute

* @param elementType the element type of the represented

* attribute

* @return SetAttribute of the given name and element type

* @throws IllegalArgumentException if attribute of the given
* name and type is not present in the managed type
*/

<E> SetAttribute<? super X, E> getSet(String name, Class<E> elementType);

/**

* Return the Set-valued attribute declared by the managed type
* that corresponds to the specified name and Java element type.
* @param name the name of the represented attribute

* @param elementType the element type of the represented

* attribute

* @return declared SetAttribute of the given name and

* element type

* @throws IllegalArgumentException if attribute of the given

* name and type is not declared in the managed type

*/

<E> SetAttribute<X, E> getDeclaredSet(String name, Class<E> elementType);

/**

* Return the List-valued attribute of the managed type that
* corresponds to the specified name and Java element type.

* @param name the name of the represented attribute

* @param elementType the element type of the represented

* attribute

* @return ListAttribute of the given name and element type

* @throws IllegalArgumentException if attribute of the given
* name and type is not present in the managed type
*/

<E> ListAttribute<? super X, E> getlist(String name, Class<E> elementType);

~
*
*

Return the List-valued attribute declared by the managed

type that corresponds to the specified name and Java

element type.

@param name the name of the represented attribute

@param elementType the element type of the represented

attribute

@return declared ListAttribute of the given name and
element type

@throws I1legalArgumentException if attribute of the given
name and type is not declared in the managed type

L N

*/
<E> ListAttribute<X, E> getDeclaredList(String name, Class<E> elementType);

/**

* Return the Map-valued attribute of the managed type that

* corresponds to the specified name and Java key and value

* types.

* @param name the name of the represented attribute

* @param keyType the key type of the represented attribute
* @param valueType the value type of the represented attribute
* @return MapAttribute of the given name and key and value

* types

* @throws IllegalArgumentException if attribute of the given
*

name and type is not present in the managed type

*
~

517

<K, V> MapAttribute<? super X, K, V> getMap(String name,
(lass<K> keyType,
(lass<V> valueType);

/**
* Return the Map-valued attribute declared by the managed

* type that corresponds to the specified name and Java key

* and value types.

* @param name the name of the represented attribute

* @param keyType the key type of the represented attribute

* @param valueType the value type of the represented attribute
* @return declared MapAttribute of the given name and key

* and value types

* @throws IllegalArgumentException if attribute of the given

* name and type is not declared in the managed type

*/

<K, V> MapAttribute<X, K, V> getDeclaredMap(String name,
(lass<K> keyType,
(lass<V> valueType);

/**

Return all multi-valued attributes (Collection-, Set-,
List-, and Map-valued attributes) of the managed type.
Returns empty set if the managed type has no multi-valued
attributes.

@return Collection-, Set-, List-, and Map-valued attributes

* % X X *

*/
Set<PluralAttribute<? super X, ?, ?>> getPluralAttributes();

/**

Return all multi-valued attributes (Collection-, Set-,

List-, and Map-valued attributes) declared by the

managed type.

Returns empty set if the managed type has no declared

multivalued attributes.

@return declared Collection-, Set-, List-, and Map-valued
attributes

L I

*/
Set<PluralAttribute<X, ?, ?>> getDeclaredPluralAttributes();

//String-based:

/'k*

* Return the attribute of the managed

* type that corresponds to the specified name.

* @param name the name of the represented attribute

* @return attribute with given name

* @throws IllegalArgumentException if attribute of the given
* name is not present in the managed type

*/
Attribute<? super X, 7> getAttribute(String name);

/**

Return the attribute declared by the managed

type that corresponds to the specified name.

@param name the name of the represented attribute

@return attribute with given name

@throws I1legalArgumentException if attribute of the given
name is not declared in the managed type

* X ok X * X

*/
Attribute<X, 7> getDeclaredAttribute(String name);
/**

* Return the single-valued attribute of the managed type that
* corresponds to the specified name.
* @param name the name of the represented attribute

518

* @return single-valued attribute with the given name

* @throws IllegalArgumentException if attribute of the given

* name is not present in the managed type

*/

SingularAttribute<? super X, 7> getSingularAttribute(String name);

/**

* Return the single-valued attribute declared by the managed

* type that corresponds to the specified name.

* @param name the name of the represented attribute

* @return declared single-valued attribute of the given

* name

* @throws IllegalArgumentException if attribute of the given

* name is not declared in the managed type

*/

SingularAttribute<X, 7> getDeclaredSingularAttribute(String name);

/**

* Return the Collection-valued attribute of the managed type
* that corresponds to the specified name.

* @param name the name of the represented attribute

* @return CollectionAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
*

name is not present in the managed type
*/
CollectionAttribute<? super X, ?> getCollection(String name);

/**

* Return the Collection-valued attribute declared by the

* managed type that corresponds to the specified name.

* @param name the name of the represented attribute

* @return declared CollectionAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type

*/

CollectionAttribute<X, ?> getDeclaredCollection(String name);

* Return the Set-valued attribute of the managed type that

* corresponds to the specified name.

* @param name the name of the represented attribute

* @return SetAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not present in the managed type

SetAttribute<? super X, 7> getSet(String name);

/**

* Return the Set-valued attribute declared by the managed type
* that corresponds to the specified name.

* @param name the name of the represented attribute

* @return declared SetAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type

*/

SetAttribute<X, 7> getDeclaredSet(String name);

* Return the List-valued attribute of the managed type that
* corresponds to the specified name.

* @param name the name of the represented attribute

* @return ListAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not present in the managed type

ListAttribute<? super X, 7> getlList(String name);

519

* Return the List-valued attribute declared by the managed

* type that corresponds to the specified name.

* @param name the name of the represented attribute

* @return declared ListAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type

ListAttribute<X, ?> getDeclaredList(String name);

/**

* Return the Map-valued attribute of the managed type that

* corresponds to the specified name.

* @param name the name of the represented attribute

* @return MapAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not present in the managed type

*/
MapAttribute<? super X, ?, ?> getMap(String name);

* Return the Map-valued attribute declared by the managed

* type that corresponds to the specified name.

* @param name the name of the represented attribute

* @return declared MapAttribute of the given name

* @throws IllegalArgumentException if attribute of the given
* name is not declared in the managed type

MapAttribute<X, ?, 7> getDeclaredMap(String name);

D.12. MapAttribute

Instances of the type {@code MapAttribute} represent
persistent {@link java.util.Map}-valued attributes.

*
*
*
* @param <X> The type the represented Map belongs to

* @param <K> The type of the key of the represented Map

* @param <V> The type of the value of the represented Map
*
*
*

@since 2.0

public interface MapAttribute<X, K, V>
extends PluralAttribute<X, java.util.Map<K, V>, V> {

/**

* Return the Java type of the map key.
* @return Java key type

*/

(lass<K> getKeyJavaType();

/**

* Return the type representing the key type of the map.
* @return type representing key type
*
/
Type<K> getKeyType();

D.13. MappedSuperclassType

package jakarta.persistence.metamodel;

520

/**

* An instance of the type {@code MappedSuperclassType} represents a
{@linkplain jakarta.persistence.MappedSuperclass mapped superclass}
type.

*
*
*
* @param <X> The represented mapped superclass type
*
*

@since 2.0
*/
public interface MappedSuperclassType<X> extends IdentifiableType<X> {}

D.14. PluralAttribute

/**

Instances of the type {@code PluralAttribute} represent
persistent collection-valued attributes.

*
*
*
* @param <X> The type the represented collection belongs to
* @param <C> The type of the represented collection
* @param <E> The element type of the represented collection
*
* @since 2.0
*/
public interface PluralAttribute<X, C, E>

extends Attribute<X, C>, Bindable<E> {

enum CollectionType {

/** Collection-valued attribute */
COLLECTION,

/** Set-valued attribute */

SET,
/** List-valued attribute */
LIST,
/** Map-valued attribute */
MAP

}

/**

* Return the collection type.

* @return collection type

*/

CollectionType getCollectionType();

/**

* Return the type representing the element type of the
* collection.

* @return element type

*/

Type<E> getElementType();

D.15. SetAttribute

Instances of the type {@code SetAttribute} represent
persistent {@link java.util.Set}-valued attributes.

@param <X> The type the represented Set belongs to

521

* @param <E> The element type of the represented Set
*
* @since 2.0
*/
public interface SetAttribute<X, E>
extends PluralAttribute<X, java.util.Set<E>, E> {}

D.16. SingularAttribute

package jakarta.persistence.metamodel;

/**
* Instances of the type {@code SingularAttribute} represents persistent
* single-valued properties or fields.
*
* @param <X> The type containing the represented attribute
* @param <T> The type of the represented attribute
*
* @since 2.0
*/
public interface SingularAttribute<X, T>
extends Attribute<X, T>, Bindable<T> {

* Is the attribute an id attribute? This method returns true

* if the attribute is a {@linkplain jakarta.persistence.Id simple
* id}, an {@linkplain jakarta.persistence.EmbeddedId embedded id},
* or an attribute of an {@linkplain jakarta.persistence.IdClass

* id class}.

* @return boolean indicating whether the attribute is an id

boolean 1isId();

/'k*

* Is the attribute a {@linkplain jakarta.persistence.Version
* version} attribute?

* @return boolean indicating whether the attribute is a

* version attribute

*/

boolean isVersion();

/**
* Can the attribute be null?
* @return boolean indicating whether the attribute can

* be null
* @see jakarta.persistence.Basic#optional
*/

boolean isOptional();

/**

* Return the type that represents the type of the attribute.
* @return type of attribute

*/

Type<T> getType();

D.17. Type

* An instance of the type {@code Type} represents a persistent
* object or attribute type.
*
*

@param <X> The type of the represented object or attribute

522

*

* @since 2.0

*/

public interface Type<X> {

enum PersistenceType {

/** Entity class */
ENTITY,

/** Embeddable class */
EMBEDDABLE,

/** Mapped superclass */
MAPPED_SUPERCLASS,

/** Basic type */
BASIC
}

/**

* Return the persistence type.

* @return persistence type

*/

PersistenceType getPersistenceType();

/**

* Return the represented Java type.
* @return Java type

*/

(lass<X> getJavaType();

523

Appendix E: Persistence SPI Interfaces

The following APIs are defined in the package jakarta.persistence.spi.

E.1. ClassTransformer

import java.security.ProtectionDomain;

/**

* A persistence provider supplies an instance of this

* interface to the {@link PersistenceUnitInfof#addTransformer}
* method. The supplied transformer instance will get

* called to transform entity class files when they are

* loaded or redefined. The transformation occurs before

* the class is defined by the JVM.

*

* @since 1.0

*/

public interface ClassTransformer {

~
*
*

Invoked when a class is being loaded or redefined.

The implementation of this method may transform the
supplied class file and return a new replacement class
file.

@param loader the defining loader of the class to be
transformed, may be null if the bootstrap loader
@param className the name of the class in the internal form
of fully qualified class and interface names
@param classBeingRedefined if this is a redefine, the
class being redefined, otherwise null
@param protectionDomain the protection domain of the
class being defined or redefined
@param classfileBuffer the input byte buffer in class
file format - must not be modified
@return a well-formed class file buffer (the result of
the transform), or null if no transform is performed
* @throws TransformerException if the input does
* not represent a well-formed class file
*/
byte[] transform(ClassLoader loader,
String className,
(lass<?> classBeingRedefined,
ProtectionDomain protectionDomain,
byte[] classfileBuffer)
throws TransformerException;

EE T B S T R N T R T

E.2. LoadState

/**

* load states returned by the {@link ProviderUtil} SPI methods.

* @since 2.0

*

*/

public enum LoadState {
/** The state of the element is known to have been loaded. */
LOADED,
/** The state of the element is known not to have been loaded. */
NOT_LOADED,
/** The load state of the element cannot be determined. */

524

UNKNOWN

E.3. PersistenceProvider

package jakarta.persistence.spi;

import jakarta.persistence.EntityManagerFactory;
import jakarta.persistence.Persistence;

import jakarta.persistence.PersistenceConfiguration;
import jakarta.persistence.PersistenceException;
import java.util.Map;

/**

Interface implemented by the persistence provider.

*

*

* <p> It is invoked by the container in Jakarta EE environments and

* by the {@link Persistence} class in Java SE environments to create
* an {@link EntityManagerFactory} and/or to cause schema generation

* to occur.

*

*

@since 1.0
*/
public interface PersistenceProvider {

/**

* (Called by {@link Persistence} class when an

* {@link EntityManagerFactory} is to be created.

*

* @param emName the name of the persistence unit

* @param map a Map of properties for use by the

* persistence provider. These properties may be used to
* override the values of the corresponding elements in

* the {0code persistence.xml} file or specify values for
* properties not specified in the {@code persistence.xml}
* (and may be null if no properties are specified).

* @return EntityManagerFactory for the persistence unit,
* or null if the provider is not the right provider

*

*

@see PersistenceficreateEntityManagerFactory(String, Map)
*/
EntityManagerFactory createEntityManagerFactory(String emName, Map<?, 7> map);

/*"k
* Called by {@link Persistence} class when an
{@link EntityManagerFactory} is to be created.

@param configuration the configuration of the persistence unit
@return EntityManagerFactory for the persistence unit,

or null if the provider is not the right provider

@throws IllegalStateException if required configuration is missing

@see PersistenceficreateEntityManagerFactory(PersistenceConfiguration)

ECRE I R T N S

@since 3.2
*/
EntityManagerFactory createEntityManagerFactory(PersistenceConfiguration configuration);

/*'k
Called by the container when an {@link EntityManagerFactory}
is to be created.

@param info metadata for use by the persistence provider
@param map a Map of integration-level properties for use

*
*
*
*
*
* by the persistence provider (may be null if no properties

525

are specified). These properties may include properties to
control schema generation. If a Bean Validation provider is
present in the classpath, the container must pass the

{@code ValidatorFactory} instance in the map with the key
{@code "jakarta.persistence.validation.factory"}. If the
containing archive is a bean archive, the container must

pass the {@code BeanManager} instance in the map with the

key {@code "jakarta.persistence.bean.manager"}.

@return {@link EntityManagerFactory} for the persistence unit
specified by the metadata

ECEE I T N S

*/
EntityManagerFactory createContainerEntityManagerFactory(PersistenceUnitInfo info, Map<?, 7> map);

~
*
*

Create database schemas and/or tables and/or create DDL

scripts as determined by the supplied properties.

<p>

Called by the container when schema generation is to

occur as a separate phase from creation of the entity

manager factory.

<p>

@param info metadata for use by the persistence provider

@param map properties for schema generation; these may

also include provider-specific properties

@throws PersistenceException if insufficient or inconsistent
configuration information is provided of if schema
generation otherwise fails

L R S T T R R N

@since 2.1
*/
void generateSchema(PersistenceUnitInfo info, Map<?, 7> map);

~
*
*

Create database schemas and/or tables and/or create DDL
scripts as determined by the supplied properties.
<p>
Called by the {@link Persistence} class when schema generation
is to occur as a separate phase from creation of the entity
manager factory.
<p>
@param persistenceUnitName the name of the persistence unit
@param map properties for schema generation; these may
also contain provider-specific properties. The
value of these properties override any values that
may have been configured elsewhere.
@return true if schema was generated, otherwise false
@throws PersistenceException if insufficient or inconsistent
configuration information is provided or if schema
generation otherwise fails

L R S T R R T R R

@since 2.1
*/
boolean generateSchema(String persistenceUnitName, Map<?, 7> map);

/**

* Return the utility interface implemented by the persistence
* provider.

* @return an instance of {@link ProviderUtil}

*

*

@since 2.0

*/
ProviderUtil getProviderUtil();

526

E.4. PersistenceProviderResolver

import java.util.List;

/**

Provides a list of {@linkplain PersistenceProvider persistence
providers} available in the runtime environment.

<p> Implementations must be thread-safe.
<p> Note that the {@link #getPersistenceProviders} method can
potentially be called many times: it is recommended that the

implementation of this method make use of caching.

@see PersistenceProvider
@since 2.0

0% kX 3k Xk X X X %

*/
public interface PersistenceProviderResolver {

/**

* Returns a list of the {@linkplain PersistenceProvider
* persistence provider} implementations available in the
* runtime environment.

@return list of the persistence providers available
in the environment

* Xk

*/
List<PersistenceProvider> getPersistenceProviders();

/**
* (lear cache of providers.
*/
void clearCachedProviders();

E.5. PersistenceProviderResolverHolder

package jakarta.persistence.spi;

import java.lang.ref.ReferenceQueue;
import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Arraylist;

import java.util.List;

import java.util.HashMap;

import java.util.Iterator;

import java.util.ServiceConfigurationError;
import java.util.Serviceloader;

import java.util.logging.level;

import java.util.logging.lLogger;

/‘k*
Holds the global {@link PersistenceProviderResolver} instance.

If no {@code PersistenceProviderResolver} is set by the environment,
the default {@code PersistenceProviderResolver} is used.

<p>Enable {@code "jakarta.persistence.spi"} logger to show diagnostic
information.

L I S T T

<p>Implementations must be thread-safe.

527

* @since 2.0
*/
public class PersistenceProviderResolverHolder {

private static PersistenceProviderResolver singleton = new DefaultPersistenceProviderResolver();

/**

* Returns the current persistence provider resolver.

*

* @return the current persistence provider resolver

*/

public static PersistenceProviderResolver getPersistenceProviderResolver() {
return singleton;

}

/~k~k
* Defines the persistence provider resolver used.

*

* @param resolver persistence provider resolver to be used.
*/
public static void setPersistenceProviderResolver(PersistenceProviderResolver resolver) {
if (resolver == null) {
singleton = new DefaultPersistenceProviderResolver();
} else {
singleton = resolver;

}

/*k*

Default provider resolver class to use when none is explicitly set.

specification. A Serviceloader.load() call is made with the current context
classloader to find the service provider files on the classpath.
*/
private static class DefaultPersistenceProviderResolver implements PersistenceProviderResolver {

*
*
* <p>Uses service loading mechanism as described in the Jakarta Persistence
*
*

/**

* Cached list of available providers cached by CacheKey to ensure

* there is not potential for provider visibility issues.

*/

private volatile HashMap<CacheKey, PersistenceProviderReference> providers = new HashMap<CacheKey,
PersistenceProviderReference>();

/**

* Queue for reference objects referring to class loaders or persistence providers.
*/

private static final ReferenceQueue referenceQueue = new ReferenceQueue();

public List<PersistenceProvider> getPersistenceProviders() {
// Before we do the real loading work, see whether we need to
// do some cleanup: If references to class loaders or
// persistence providers have been nulled out, remove all related
// information from the cache.
processQueue();

(lassLoader loader = getContextClassLoader();

CacheKey cacheKey = new CacheKey(loader);

PersistenceProviderReference providersReferent = this.providers.get(cacheKey);
List<PersistenceProvider> loadedProviders = null;

if (providersReferent != null) {
loadedProviders = providersReferent.get();

}

if (loadedProviders == null) {
loadedProviders = new ArraylList<>();

528

OF

Iterator<PersistenceProvider> ipp = Serviceloader.load(PersistenceProvider.class, loader).iterator

try {
while (ipp.hasNext()) {
try {
PersistenceProvider pp = ipp.next();
loadedProviders.add(pp);
} catch (ServiceConfigurationError sce) {
log(Level.FINEST, sce.toString());
}
I

} catch (ServiceConfigurationError sce) {
log(Level.FINEST, sce.toString());
}

// If none are found we'll log the provider names for diagnostic
// purposes.
if (loadedProviders.isEmpty()) {

log(Level.WARNING, "No valid providers found.");

}

providersReferent = new PersistenceProviderReference(loadedProviders, referenceQueue, cacheKey);

this.providers.put(cacheKey, providersReferent);

}

return loadedProviders;

}

/‘k*
* Remove garbage collected cache keys & providers.
*/
private void processQueue() {
CacheKeyReference ref;
while ((ref = (CacheKeyReference) referenceQueue.poll()) != null) {
providers.remove(ref.getCacheKey());
}
}

/**
* Wraps {@code Thread.currentThread().getContextClassLoader()} into a
* doPrivileged block if security manager is present
*/
private static ClassLoader getContextClassLoader() {
if (System.getSecurityManager() == null) {
return Thread.currentThread().getContextClassLoader();
} else {
return AccessController.doPrivileged(new PrivilegedAction<ClassLoader>() {
public ClassLoader run() {
return Thread.currentThread().getContextClassLoader();
}
1

}
private static final String LOGGER_SUBSYSTEM = "jakarta.persistence.spi";
private Logger logger;
private void log(Level level, String message) {
if (this.logger == null) {

this.logger = Logger.getlLogger (LOGGER_SUBSYSTEM);

}
this.logger.log(level, LOGGER_SUBSYSTEM + "::" + message);

/**k

529

530

* (lear all cached providers

*/

public void clearCachedProviders() {
this.providers.clear();

}

/**
* The common interface to get a CacheKey implemented by
* LoaderReference and PersistenceProviderReference.
*/
private interface CacheKeyReference {
CacheKey getCacheKey();
}

/**
* Key used for cached persistence providers. The key checks
* the class loader to determine if the persistence providers
* is a match to the requested one. The loader may be null.
*/

private class CacheKey implements Cloneable {

/* Weak Reference to ClasslLoader */
private LoaderReference loaderRef;

/* Cached Hashcode */
private int hashCodeCache;

CacheKey(ClassLoader loader) {
if (loader == null) {
this.loaderRef = null;

} else {

loaderRef = new LoaderReference(loader, referenceQueue, this);
}
calculateHashCode();

}

(lassLoader getloader() {
return (loaderRef != null) ? loaderRef.get() : null;

}

public boolean equals(Object other) {
if (this == other) {
return true;
}
try {
final CacheKey otherEntry = (CacheKey) other;
// quick check to see if they are not equal
if (hashCodeCache != otherEntry.hashCodeCache) {
return false;
}
// are refs (both non-null) or (both null)?
if (loaderRef == null) {
return otherEntry.loaderRef == null;
ks
(lassLoader loader = loaderRef.get();
return (otherEntry.loaderRef != null)
// with a null reference we can no longer find
// out which class loader was referenced; so
// treat it as unequal

&& (loader != null) && (loader == otherEntry.loaderRef.get());

} catch (NullPointerException e) {
} catch (ClassCastException e) {
}

return false;

public int hashCode() {
return hashCodeCache;

}

private void calculateHashCode() {
(lassLoader loader = getloader();
if (loader != null) {
hashCodeCache = loader.hashCode();
}
I

public Object clone() {

try {
CacheKey clone = (CacheKey) super.clone();
if (loaderRef != null) {

clone.loaderRef = new LoaderReference(loaderRef.get(), referenceQueue, clone);

}
return clone;

} catch (CloneNotSupportedException e) {
// this should never happen
throw new InternalError();

}

public String toString() {
return "CacheKey[" + getlLoader() + ")]";
}

* References to class loaders are weak references, so that they can be
* garbage collected when nobody else is using them. The DefaultPersistenceProviderResolver
* class has no reason to keep class loaders alive.
*/
private class LoaderReference extends WeakReference<(ClassLoader>
implements CacheKeyReference {
private CacheKey cacheKey;

@Suppresslarnings("unchecked")

LoaderReference(ClassLoader referent, ReferenceQueue g, CacheKey key) {
super(referent, q);
cacheKey = key;

}

public CacheKey getCacheKey() {
return cacheKey;
}
}

/**
* References to persistence provider are soft references so that they can be garbage
* collected when they have no hard references.
*/
private class PersistenceProviderReference extends SoftReference<List<PersistenceProvider>>
implements CacheKeyReference {
private CacheKey cacheKey;

@Suppressharnings("unchecked")

PersistenceProviderReference(List<PersistenceProvider> referent, ReferenceQueue g, CacheKey key) {

super(referent, q);
cacheKey = key;
}

public CacheKey getCacheKey() {
return cacheKey;

}

531

E.6. PersistenceUnitInfo

532

package jakarta.persistence.spi;

import javax.sql.DataSource;

import java.util.List;

import java.util.Properties;

import java.net.URL;

import jakarta.persistence.SharedCacheMode;
import jakarta.persistence.ValidationMode;
import jakarta.persistence.EntityManagerFactory;

/**

*

*

*

*

*/

Interface implemented by the container and used by the persistence
provider when creating an {@link EntityManagerFactory}.

@since 1.0

public interface PersistenceUnitInfo {

/**

* Returns the name of the persistence unit. Corresponds to the
* {@code name} attribute in the {@code persistence.xml} file.
* @return the name of the persistence unit

*/

String getPersistenceUnitName();

* Returns the fully qualified name of the persistence provider

* implementation class. Corresponds to the {@code provider} element
* in the {@code persistence.xml} file.

* @return the fully qualified name of the persistence provider

* implementation class

*/

String getPersistenceProviderClassName();

/**

* Returns the fully-qualified class name of an annotation annotated

* {@code Scope} or {@code NormalScope}. Corresponds to the {@code scope}
* element in {@code persistence.xml}.

* @return the fully-qualified class name of the scope annotation,

* or null if no scope was explicitly specified

*/

public String getScopeAnnotationName();

/**

* Returns the fully-qualified class names of annotations annotated

* {@code Qualifier}. Corresponds to the {@code qualifier} element in

* {@code persistence.xml}.

* @return the fully-qualified class names of the qualifier annotations,

* or an empty list if no qualifier annotations were explicitly
* specified
*/

public List<String> getQualifierAnnotationNames();

/**

* Returns the transaction type of the entity managers created by

* the {@link EntityManagerFactory}. The transaction type corresponds

* to the {@code transaction-type} attribute in the {@code persistence.xml}
* file.

* @return transaction type of the entity managers created

*
*
*
jakarta
*
*/
Per

/**
*
*
*
*
*
*
*/

Dat

/**

*

by the EntityManagerFactory

<p>Note: This method will change its return type to {@link
.persistence.PersistenceUnitTransactionType}

in the next major version.

sistenceUnitTransactionType getTransactionType();

Returns the JTA-enabled data source to be used by the
persistence provider. The data source corresponds to the

{@code jta-data-source} element in the {@code persistence.xml}

file or is provided at deployment or by the container.
@return the JTA-enabled data source to be used by the
persistence provider

aSource getJtaDataSource();

Returns the non-JTA-enabled data source to be used by the

* persistence provider for accessing data outside a JTA

ECE I

*/
Dat

~
*
*

L D T R

*/
Lis

~
*
*

* Ok X X Xk * X X *

*/
Lis

~
*
*

EE I S

transaction. The data source corresponds to the named

{@code non-jta-data-source} element in the {@code persistence.xml}

file or provided at deployment or by the container.
@return the non-JTA-enabled data source to be used by the
persistence provider for accessing data outside a JTA
transaction

aSource getNonJtaDataSource();

Returns the list of the names of the mapping files that the

persistence provider must load to determine the mappings for
the entity classes. The mapping files must be in the standard
XML mapping format, be uniquely named and be resource-loadable

from the application classpath. Each mapping file name
corresponds to a {@code mapping-file} element in the

{@code persistence.xml} file.

@return the list of mapping file names that the persistence
provider must load to determine the mappings for the entity
classes

t<String> getMappingFileNames();

Returns a list of URLs for the jar files or exploded jar
file directories that the persistence provider must examine
for managed classes of the persistence unit. Each URL
corresponds to a {@code jar-file} element in the

{@code persistence.xml} file. A URL will either be a

file: URL referring to a jar file or referring to a directory

that contains an exploded jar file, or some other URL from
which an InputStream in jar format can be obtained.
@return a list of URL objects referring to jar files or
directories

t<URL> getJarFileUrls();

Returns the URL for the jar file or directory that is the
root of the persistence unit. (If the persistence unit is
rooted in the WEB-INF/classes directory, this is the URL
of that directory.)

The URL will either be a file: URL referring to a jar file
or referring to a directory that contains an exploded jar
file, or some other URL from which an InputStream in jar
format can be obtained.

533

* @return a URL referring to a jar file or directory
*/
URL getPersistenceUnitRootUrl();

/**

* Returns the list of the names of the classes that the

* persistence provider must add to its set of managed

* classes. Each name corresponds to a named {@code class} element in the
* {@code persistence.xml} file.

* @return the list of the names of the classes that the

* persistence provider must add to its set of managed

* classes

*/

List<String> getManagedClassNames();

/**

* Returns whether classes in the root of the persistence unit
* that have not been explicitly listed are to be included in the
* set of managed classes. This value corresponds to the

* {@code exclude-unlisted-classes} element in the

* {@code persistence.xml} file.

* @return whether classes in the root of the persistence

* ynit that have not been explicitly listed are to be

* included in the set of managed classes

*/

boolean excludeUnlistedClasses();

~
*
*

Returns the specification of how the provider must use

a second-level cache for the persistence unit.

The result of this method corresponds to the {@code shared-cache-mode}
element in the {@code persistence.xml} file.

@return the second-level cache mode that must be used by the

provider for the persistence unit

* % X ¥ F ok ok F

@since 2.0
*/
SharedCacheMode getSharedCacheMode();

/**

* Returns the validation mode to be used by the persistence
* provider for the persistence unit. The validation mode

* corresponds to the {@code validation-mode} element in the
* {@code persistence.xml} file.

* @return the validation mode to be used by the

* persistence provider for the persistence unit

*

* @since 2.0

*/
ValidationMode getValidationMode();

/**

* Returns a properties object. Each property corresponds to a
* {@code property} element in the {@code persistence.xml} file
* or to a property set by the container.

* @return Properties object

*/

Properties getProperties();

/**

* Returns the schema version of the {@code persistence.xml} file.
* @return {@code persistence.xml} schema version

*

* @since 2.0

*/

String getPersistenceXMLSchemaVersion();

534

/**

* Returns ClassLoader that the provider may use to load any
* classes, resources, or open URLs.

* @return ClassLoader that the provider may use to load any
* classes, resources, or open URLs

*/

(lassLoader get(lassLoader();

~
*
*

Add a transformer supplied by the provider that is called for
every new class definition or class redefinition that gets
loaded by the loader returned by the

{@link PersistenceUnitInfofigetClassLoader} method. The
transformer has no effect on the result returned by the
{@link PersistenceUnitInfo#igetNewTempClassLoader} method.
(lasses are only transformed once within the same classloading
scope, regardless of how many persistence units they may be

a part of.

@param transformer provider-supplied transformer that the
container invokes at class-(re)definition time

L I R T R

*/
void addTransformer(ClassTransformer transformer);

~
*
*

Return a new instance of a {@link ClasslLoader} that the provider
may use to temporarily load any classes, resources, or open
URLs. The scope and classpath of this loader is exactly the

same as that of the loader returned by {@link
PersistenceUnitInfo#fgetClassLoader}. None of the classes loaded
by this class loader are visible to application components. The
provider may only use this {@code ClasslLoader} within the scope
of the {@link PersistenceProvider#icreateContainerEntityManagerFactory}
call.

@return temporary {@code ClasslLoader} with same visibility as
current loader

L R T R

*/
(lassLoader getNewTempClassLoader();

E.7. ProviderUtil

import jakarta.persistence.FetchType;

/**

* Utility interface implemented by the persistence provider. This

* interface is invoked by the {@link jakarta.persistence.PersistenceUtil}
* implementation to determine the load status of an entity or entity

* attribute.
*

*

@since 2.0
*/
public interface ProviderUtil {

~
*
*

If the provider determines that the entity has been provided by
itself and that the state of the specified attribute has been loaded,
this method returns {@link LoadState#LOADED}.

<p> If the provider determines that the entity has been provided

by itself and that either entity attributes with {@link FetchType#EAGER}
have not been loaded or that the state of the specified attribute has
not been loaded, this method returns {@link LoadState#NOT_LOADED}.
<p> If a provider cannot determine the load state, this method
returns {@link LoadState#UNKNOWN}.

<p> The provider's implementation of this method must not obtain a
reference to an attribute value, as this could trigger the loading

L I N T R

535

* of entity state if the entity has been provided by a different

* provider.

* @param entity entity instance

* @param attributeName name of attribute whose load status is

* to be determined

* @return load status of the attribute

*/

LoadState isLoadedWithoutReference(Object entity, String attributeName);

~
*
*

If the provider determines that the entity has been provided by
itself and that the state of the specified attribute has been loaded,
this method returns {@link LoadState#LOADED}.

<p> If a provider determines that the entity has been provided by
itself and that either the entity attributes with {@link FetchType#EAGER}
have not been loaded or that the state of the specified attribute has
not been loaded, this method returns {@link LoadState#NOT_LOADED}.
<p> If the provider cannot determine the load state, this method
returns {@link LoadState#UNKNOWN}.

<p> The provider's implementation of this method is permitted to
obtain a reference to the attribute value. (This access is safe
because providers which might trigger the loading of the attribute
state will have already been determined by

{@link #isLoadedWithoutReference}.)

@param entity entity instance

@param attributeName name of attribute whose load status is
to be determined

@return load status of the attribute

EE I R R S T T R R D T R

*/
LoadState isLoadedWithReference(Object entity, String attributeName);

~
*
*

If the provider determines that the entity has been provided by
itself and that the state of all attributes for which

{@link FetchType#EAGER} has been specified have been loaded, this
method returns {@link LoadState#LOADED}.

<p> If the provider determines that the entity has been provided
by itself and that not all attributes with {@link FetchType#EAGER}
have been loaded, this method returns {@link LoadState#NOT_LOADED}.
<p> If the provider cannot determine if the entity has been
provided by itself, this method returns {@link LoadState#UNKNOWN}.
<p> The provider's implementation of this method must not obtain

a reference to any attribute value, as this could trigger the
loading of entity state if the entity has been provided by a
different provider.

@param entity whose loaded status is to be determined

@return load status of the entity

L R T R T R R G

*/
LoadState isLoaded(Object entity);

536

	Jakarta Persistence
	Table of Contents
	Eclipse Foundation Specification License - v1.1
	Disclaimers

	Chapter 1. Introduction
	1.1. Authorship
	1.2. Document Conventions

	Chapter 2. Entities
	2.1. The Entity Class
	2.2. Persistent Fields and Properties
	2.2.1. Persistent Attribute Type
	2.2.2. Property Access

	2.3. Access Type
	2.3.1. Default Access Type
	2.3.2. Explicit Access Type
	2.3.3. Access Type of an Embeddable Class
	2.3.4. Defaulted Access Types of Embeddable Classes and Mapped Superclasses

	2.4. Primary Keys and Entity Identity
	2.4.1. Composite primary keys
	2.4.2. Primary Keys Corresponding to Derived Identities
	2.4.2.1. Specification of Derived Identities
	2.4.2.2. Mapping of Derived Identities
	2.4.2.3. Examples of Derived Identities

	2.5. Entity Versions
	2.6. Basic Types
	2.7. Embeddable Classes
	2.8. Collections of Embeddable Classes and Basic Types
	2.9. Map Collections
	2.9.1. Map Keys
	2.9.2. Map Values

	2.10. Mapping Defaults for Non-Relationship Fields or Properties
	2.11. Entity Relationships
	2.12. Relationship Mapping Defaults
	2.12.1. Bidirectional OneToOne Relationships
	2.12.2. Bidirectional ManyToOne / OneToMany Relationships
	2.12.3. Unidirectional Single-Valued Relationships
	2.12.3.1. Unidirectional OneToOne Relationships
	2.12.3.2. Unidirectional ManyToOne Relationships

	2.12.4. Bidirectional ManyToMany Relationships
	2.12.5. Unidirectional Multi-Valued Relationships
	2.12.5.1. Unidirectional OneToMany Relationships
	2.12.5.2. Unidirectional ManyToMany Relationships

	2.13. Inheritance
	2.13.1. Abstract Entity Classes
	2.13.2. Mapped Superclasses
	2.13.3. Non-Entity Classes in the Entity Inheritance Hierarchy

	2.14. Inheritance Mapping Strategies
	2.14.1. Single Table per Class Hierarchy Strategy
	2.14.2. Joined Subclass Strategy
	2.14.3. Table per Concrete Class Strategy

	2.15. Naming of Database Objects

	Chapter 3. Entity Operations
	3.1. Overview
	3.2. EntityManager Interface
	3.3. Entity Instance’s Life Cycle
	3.3.1. Entity Instance Creation
	3.3.2. Persisting an Entity Instance
	3.3.3. Removal
	3.3.4. Synchronization to the Database
	3.3.5. Refreshing an Entity Instance
	3.3.6. Evicting an Entity Instance from the Persistence Context
	3.3.7. Detached Entities
	3.3.7.1. Merging Detached Entity State
	3.3.7.2. Detached Entities and Lazy Loading

	3.3.8. Managed Instances
	3.3.9. Load State

	3.4. Persistence Context Lifetime and Synchronization Type
	3.4.1. Synchronization with the Current Transaction
	3.4.2. Transaction Commit
	3.4.3. Transaction Rollback

	3.5. Locking and Concurrency
	3.5.1. Optimistic Locking
	3.5.2. Entity Versions and Optimistic Locking
	3.5.3. Pessimistic Locking
	3.5.4. Lock Modes
	3.5.4.1. OPTIMISTIC, OPTIMISTIC_FORCE_INCREMENT
	3.5.4.2. PESSIMISTIC_READ, PESSIMISTIC_WRITE, PESSIMISTIC_FORCE_INCREMENT
	3.5.4.3. Lock Mode Properties and Uses

	3.5.5. OptimisticLockException

	3.6. Entity Listeners and Callback Methods
	3.6.1. Entity Listeners
	3.6.2. Lifecycle Callback Methods
	3.6.3. Semantics of the Life Cycle Callback Methods for Entities
	3.6.4. Multiple Lifecycle Callback Methods for an Entity Lifecycle Event
	3.6.5. Exceptions
	3.6.6. Specification of Callback Listener Classes and Lifecycle Methods in the XML Descriptor
	3.6.6.1. Specification of Callback Listeners
	3.6.6.2. Specification of the Binding of Entity Listener Classes to Entities

	3.7. Bean Validation
	3.7.1. Automatic Validation Upon Lifecycle Events
	3.7.1.1. Enabling Automatic Validation
	3.7.1.2. Requirements for Automatic Validation upon Lifecycle Events

	3.7.2. Providing the ValidatorFactory

	3.8. Entity Graphs
	3.8.1. Use of Entity Graphs in find and query operations
	3.8.1.1. Fetch Graph Semantics
	3.8.1.2. Load Graph Semantics

	3.9. Type Conversion of Basic Attributes
	3.10. Second-Level Cache
	3.10.1. The Shared Cache Mode and Cacheable Annotation
	3.10.2. Cache Modes
	3.10.3. Cache Interface

	3.11. Query APIs
	3.11.1. Query Execution
	3.11.2. Queries and Flush Mode
	3.11.3. Queries and Lock Mode
	3.11.4. Query Hints
	3.11.5. Parameter Objects
	3.11.6. Named Parameters
	3.11.7. Positional Parameters
	3.11.8. Arguments to query parameters
	3.11.9. Named Queries
	3.11.10. Polymorphic Queries
	3.11.11. SQL Queries
	3.11.11.1. Returning Managed Entities from Native Queries
	3.11.11.2. Returning Unmanaged Instances
	3.11.11.3. Combinations of Result Types
	3.11.11.4. Restrictions

	3.11.12. Stored Procedures
	3.11.12.1. Named Stored Procedure Queries
	3.11.12.2. Dynamically-specified Stored Procedure Queries
	3.11.12.3. Stored Procedure Query Execution

	3.12. Summary of Exceptions

	Chapter 4. Query Language
	4.1. Overview
	4.2. Statement Types
	4.2.1. Select Statements
	4.2.1.1. Set Operators in Select Statements

	4.2.2. Update and Delete Statements

	4.3. Abstract Schema Types and Query Domains
	4.3.1. Naming
	4.3.2. Example

	4.4. The FROM Clause and Navigational Declarations
	4.4.1. Identifiers
	4.4.2. Identification Variables
	4.4.3. Range Variable Declarations
	4.4.4. Path Expressions
	4.4.4.1. Path Expression Syntax

	4.4.5. Joins
	4.4.5.1. Inner Joins
	4.4.5.2. Outer Joins
	4.4.5.3. Fetch Joins

	4.4.6. Collection Member Declarations
	4.4.7. FROM Clause and SQL
	4.4.8. Polymorphism
	4.4.9. Downcasting

	4.5. WHERE Clause
	4.6. Conditional Expressions
	4.6.1. Conditional Expression Composition
	4.6.2. Operators and Operator Precedence
	4.6.3. Comparison Expressions
	4.6.4. Between Expressions
	4.6.5. In Expressions
	4.6.6. Like Expressions
	4.6.7. Null Comparison Expressions
	4.6.8. Empty Collection Comparison Expressions
	4.6.9. Collection Member Expressions
	4.6.10. Exists Expressions
	4.6.11. All or Any Expressions
	4.6.12. Subqueries
	4.6.13. Null Values
	4.6.14. Equality and Comparison Semantics
	4.6.14.1. Queries Using Input Parameters

	4.7. Scalar Expressions
	4.7.1. Literals
	4.7.2. Identification Variables
	4.7.3. Path Expressions
	4.7.4. Input Parameters
	4.7.4.1. Positional Parameters
	4.7.4.2. Named Parameters

	4.7.5. Arithmetic Expressions
	4.7.6. String concatenation operator
	4.7.7. Built-in String, Arithmetic, and Datetime Functional Expressions
	4.7.7.1. String Functions
	4.7.7.2. Arithmetic Functions
	4.7.7.3. Datetime Functions

	4.7.8. Typecasts
	4.7.9. Invocation of Predefined and User-defined Database Functions
	4.7.10. Case Expressions
	4.7.11. Identifier and Version Functions
	4.7.12. Entity Type Expressions and Literal Entity Types
	4.7.13. Numeric Expressions and Type Promotion

	4.8. GROUP BY, HAVING
	4.9. SELECT Clause
	4.9.1. Result Type of the SELECT Clause
	4.9.2. Constructor Expressions in the SELECT Clause
	4.9.3. Null Values in the Query Result
	4.9.4. Embeddables in the Query Result
	4.9.5. Aggregate Functions in the SELECT Clause

	4.10. ORDER BY Clause
	4.11. Bulk Update and Delete Operations
	4.12. BNF

	Chapter 5. Metamodel API
	5.1. Static Metamodel Classes
	5.1.1. Canonical Metamodel
	5.1.1.1. Example Canonical Metamodel

	5.1.2. Bootstrapping the Static Metamodel

	5.2. Runtime Access to Metamodel

	Chapter 6. Criteria API
	6.1. Overview
	6.2. Criteria Query API Usage
	6.3. Constructing Criteria Queries
	6.3.1. CriteriaQuery Creation
	6.3.2. Query Roots
	6.3.3. Joins
	6.3.4. Fetch Joins
	6.3.5. Path Navigation
	6.3.6. Restricting the Query Result
	6.3.7. Downcasting
	6.3.8. Expressions
	6.3.8.1. Result Types of Expressions

	6.3.9. Literals
	6.3.10. Parameter Expressions
	6.3.11. Specifying the Select List
	6.3.11.1. Assigning Aliases to Selection Items

	6.3.12. Subqueries
	6.3.13. GroupBy and Having
	6.3.14. Ordering the Query Results
	6.3.15. Bulk Update and Delete Operations

	6.4. Constructing Strongly-typed Queries using the jakarta.persistence.metamodel Interfaces
	6.5. Use of the Criteria API with Strings to Reference Attributes
	6.6. Query Modification
	6.7. Query Execution

	Chapter 7. Entity Managers and Persistence Contexts
	7.1. Persistence Contexts
	7.2. Obtaining an EntityManager
	7.2.1. Obtaining an Entity Manager in the Jakarta EE Environment
	7.2.2. Obtaining an Application-managed Entity Manager

	7.3. Obtaining an Entity Manager Factory
	7.3.1. Obtaining an Entity Manager Factory in a Jakarta EE Container
	7.3.2. Obtaining an Entity Manager Factory in a Java SE Environment
	7.3.3. Obtaining an Entity Manager Factory for a programmatically-defined persistence unit

	7.4. EntityManagerFactory Interface
	7.5. Controlling Transactions
	7.5.1. JTA EntityManagers
	7.5.2. Resource-local EntityManagers
	7.5.3. The EntityTransaction Interface

	7.6. The runInTransaction and callInTransaction methods
	7.7. Container-managed Persistence Contexts
	7.7.1. Persistence Context Synchronization Type
	7.7.2. Container-managed Transaction-scoped Persistence Context
	7.7.3. Container-managed Extended Persistence Context
	7.7.3.1. Inheritance of Extended Persistence Context

	7.7.4. Persistence Context Propagation
	7.7.4.1. Requirements for Persistence Context Propagation

	7.8. Application-managed Persistence Contexts
	7.9. Requirements on the Container
	7.9.1. Application-managed Persistence Contexts
	7.9.2. Container Managed Persistence Contexts

	7.10. Runtime Contracts between the Container and Persistence Provider
	7.10.1. Container Responsibilities
	7.10.2. Provider Responsibilities

	7.11. PersistenceUnitUtil Interface
	7.12. SchemaManager Interface

	Chapter 8. Entity Packaging
	8.1. Persistence Unit
	8.2. Persistence Unit Packaging
	8.2.1. persistence.xml file
	8.2.1.1. name
	8.2.1.2. transaction-type
	8.2.1.3. description
	8.2.1.4. provider
	8.2.1.5. qualifier
	8.2.1.6. scope
	8.2.1.7. jta-data-source, non-jta-data-source
	8.2.1.8. mapping-file, jar-file, class, exclude-unlisted-classes
	8.2.1.9. shared-cache-mode
	8.2.1.10. validation-mode
	8.2.1.11. properties

	8.2.2. Persistence Unit Scope

	8.3. persistence.xml Schema

	Chapter 9. Container and Provider Contracts for Deployment and Bootstrapping
	9.1. Jakarta EE Deployment
	9.2. Bootstrapping in Java SE Environments
	9.2.1. Schema Generation

	9.3. Determining the Available Persistence Providers
	9.4. Schema Generation
	9.4.1. Data Loading

	9.5. Responsibilities of the Persistence Provider
	9.5.1. jakarta.persistence.spi.PersistenceProvider
	9.5.2. jakarta.persistence.spi.ProviderUtil

	9.6. jakarta.persistence.spi.PersistenceUnitInfo Interface
	9.6.1. jakarta.persistence.spi.ClassTransformer Interface

	9.7. jakarta.persistence.Persistence Class
	9.8. jakarta.persistence.PersistenceConfiguration Class
	9.9. PersistenceUtil Interface
	9.9.1. Contracts for Determining the Load State of an Entity or Entity Attribute

	Chapter 10. Metadata Annotations
	10.1. Entity
	10.2. Callback Annotations
	10.3. EntityGraph Annotations
	10.3.1. NamedEntityGraph and NamedEntityGraphs Annotations
	10.3.2. NamedAttributeNode Annotation
	10.3.3. NamedSubgraph Annotation

	10.4. Annotations for Queries
	10.4.1. NamedQuery Annotation
	10.4.2. NamedNativeQuery Annotation
	10.4.3. NamedStoredProcedureQuery Annotation
	10.4.4. Annotations for SQL Result Set Mappings

	10.5. References to EntityManager and EntityManagerFactory
	10.5.1. PersistenceContext Annotation
	10.5.2. PersistenceUnit Annotation

	10.6. Annotations for Attribute Converter Classes

	Chapter 11. Metadata for Object/Relational Mapping
	11.1. Annotations for Object/Relational Mapping
	11.1.1. Access Annotation
	11.1.2. AssociationOverride Annotation
	11.1.3. AssociationOverrides Annotation
	11.1.4. AttributeOverride Annotation
	11.1.5. AttributeOverrides Annotation
	11.1.6. Basic Annotation
	11.1.7. Cacheable Annotation
	11.1.8. CollectionTable Annotation
	11.1.9. Column Annotation
	11.1.10. Convert Annotation
	11.1.11. Converts Annotation
	11.1.12. DiscriminatorColumn Annotation
	11.1.13. DiscriminatorValue Annotation
	11.1.14. ElementCollection Annotation
	11.1.15. Embeddable Annotation
	11.1.16. Embedded Annotation
	11.1.17. EmbeddedId Annotation
	11.1.18. Enumerated Annotation
	11.1.19. EnumeratedValue Annotation
	11.1.20. ForeignKey Annotation
	11.1.21. GeneratedValue Annotation
	11.1.22. Id Annotation
	11.1.23. IdClass Annotation
	11.1.24. Index Annotation
	11.1.25. Inheritance Annotation
	11.1.26. JoinColumn Annotation
	11.1.27. JoinColumns Annotation
	11.1.28. JoinTable Annotation
	11.1.29. Lob Annotation
	11.1.30. ManyToMany Annotation
	11.1.31. ManyToOne Annotation
	11.1.32. MapKey Annotation
	11.1.33. MapKeyClass Annotation
	11.1.34. MapKeyColumn Annotation
	11.1.35. MapKeyEnumerated Annotation
	11.1.36. MapKeyJoinColumn Annotation
	11.1.37. MapKeyJoinColumns Annotation
	11.1.38. MapKeyTemporal Annotation
	11.1.39. MappedSuperclass Annotation
	11.1.40. MapsId Annotation
	11.1.41. OneToMany Annotation
	11.1.42. OneToOne Annotation
	11.1.43. OrderBy Annotation
	11.1.44. OrderColumn Annotation
	11.1.45. PrimaryKeyJoinColumn Annotation
	11.1.46. PrimaryKeyJoinColumns Annotation
	11.1.47. SecondaryTable Annotation
	11.1.48. SecondaryTables Annotation
	11.1.49. SequenceGenerator Annotation
	11.1.50. SequenceGenerators Annotation
	11.1.51. Table Annotation
	11.1.52. TableGenerator Annotation
	11.1.53. TableGenerators Annotation
	11.1.54. Temporal Annotation
	11.1.55. Transient Annotation
	11.1.56. UniqueConstraint Annotation
	11.1.57. Version Annotation

	11.2. Object/Relational Metadata Used in Schema Generation
	11.2.1. Table-level elements
	11.2.1.1. Table
	11.2.1.2. Inheritance
	11.2.1.3. SecondaryTable
	11.2.1.4. CollectionTable
	11.2.1.5. JoinTable
	11.2.1.6. TableGenerator

	11.2.2. Column-level elements
	11.2.2.1. Column
	11.2.2.2. MapKeyColumn
	11.2.2.3. Enumerated, MapKeyEnumerated
	11.2.2.4. Temporal, MapKeyTemporal
	11.2.2.5. Lob
	11.2.2.6. OrderColumn
	11.2.2.7. DiscriminatorColumn
	11.2.2.8. Version

	11.2.3. Primary Key mappings
	11.2.3.1. Id
	11.2.3.2. EmbeddedId
	11.2.3.3. GeneratedValue

	11.2.4. Foreign Key Column Mappings
	11.2.4.1. JoinColumn
	11.2.4.2. MapKeyJoinColumn
	11.2.4.3. PrimaryKeyJoinColumn
	11.2.4.4. ForeignKey

	11.2.5. Other Elements
	11.2.5.1. SequenceGenerator
	11.2.5.2. Index
	11.2.5.3. UniqueConstraint

	11.3. Examples of the Application of Annotations for Object/Relational Mapping

	Chapter 12. XML Object/Relational Mapping Descriptor
	12.1. Use of the XML Descriptor
	12.2. XML Overriding Rules
	12.2.1. persistence-unit-defaults Subelements
	12.2.1.1. schema
	12.2.1.2. catalog
	12.2.1.3. delimited-identifiers
	12.2.1.4. access
	12.2.1.5. cascade-persist
	12.2.1.6. entity-listeners

	12.2.2. Other Subelements of the entity-mappings element
	12.2.2.1. package
	12.2.2.2. schema
	12.2.2.3. catalog
	12.2.2.4. access
	12.2.2.5. sequence-generator
	12.2.2.6. table-generator
	12.2.2.7. named-query
	12.2.2.8. named-native-query
	12.2.2.9. named-stored-procedure-query
	12.2.2.10. sql-result-set-mapping
	12.2.2.11. entity
	12.2.2.12. mapped-superclass
	12.2.2.13. embeddable
	12.2.2.14. converter

	12.2.3. entity Subelements and Attributes
	12.2.3.1. metadata-complete
	12.2.3.2. access
	12.2.3.3. cacheable
	12.2.3.4. name
	12.2.3.5. table
	12.2.3.6. secondary-table
	12.2.3.7. primary-key-join-column
	12.2.3.8. id-class
	12.2.3.9. inheritance
	12.2.3.10. discriminator-value
	12.2.3.11. discriminator-column
	12.2.3.12. sequence-generator
	12.2.3.13. table-generator
	12.2.3.14. attribute-override
	12.2.3.15. association-override
	12.2.3.16. convert
	12.2.3.17. named-entity-graph
	12.2.3.18. named-query
	12.2.3.19. named-native-query
	12.2.3.20. named-stored-procedure-query
	12.2.3.21. sql-result-set-mapping
	12.2.3.22. exclude-default-listeners
	12.2.3.23. exclude-superclass-listeners
	12.2.3.24. entity-listeners
	12.2.3.25. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load
	12.2.3.26. attributes

	12.2.4. mapped-superclass Subelements and Attributes
	12.2.4.1. metadata-complete
	12.2.4.2. access
	12.2.4.3. id-class
	12.2.4.4. exclude-default-listeners
	12.2.4.5. exclude-superclass-listeners
	12.2.4.6. entity-listeners
	12.2.4.7. pre-persist, post-persist, pre-remove, post-remove, pre-update, post-update, post-load
	12.2.4.8. attributes

	12.2.5. embeddable Subelements and Attributes
	12.2.5.1. metadata-complete
	12.2.5.2. access
	12.2.5.3. attributes

	12.3. XML Schema

	Related Documents
	Appendix A: Revision History
	A.1. Jakarta Persistence 3.2
	A.1.1. Deprecations
	A.1.2. Deprecations for removal

	A.2. Jakarta Persistence 3.1
	A.3. Jakarta Persistence 3.0
	A.4. Java Persistence 2.2 (Maintenance Release Draft)

	Appendix B: Persistence API Interfaces
	B.1. EntityManager
	B.2. EntityTransaction
	B.3. EntityManagerFactory
	B.4. LockModeType
	B.5. Cache
	B.6. Query
	B.7. TypedQuery
	B.8. StoredProcedureQuery
	B.9. Tuple
	B.10. TupleElement
	B.11. Parameter
	B.12. Graph
	B.13. EntityGraph
	B.14. Subgraph
	B.15. AttributeNode
	B.16. SchemaManager
	B.17. Persistence
	B.18. PersistenceConfiguration
	B.19. PersistenceUtil
	B.20. PersistenceUnitUtil

	Appendix C: Criteria API Interfaces
	C.1. CriteriaBuilder
	C.2. CriteriaDelete
	C.3. CriteriaQuery
	C.4. CriteriaSelect
	C.5. CriteriaUpdate
	C.6. AbstractQuery
	C.7. CollectionJoin
	C.8. CommonAbstractCriteria
	C.9. CompoundSelection
	C.10. Expression
	C.11. Fetch
	C.12. FetchParent
	C.13. AbstractQuery
	C.14. Join
	C.15. JoinType
	C.16. ListJoin
	C.17. LocalDateField
	C.18. LocalDateTimeField
	C.19. LocalTimeField
	C.20. MapJoin
	C.21. Nulls
	C.22. Order
	C.23. ParameterExpression
	C.24. Path
	C.25. PluralJoin
	C.26. Predicate
	C.27. Root
	C.28. Selection
	C.29. SetJoin
	C.30. Subquery
	C.31. TemporalField

	Appendix D: Metamodel API Interfaces
	D.1. Metamodel
	D.2. StaticMetamodel
	D.3. Attribute
	D.4. BasicType
	D.5. Bindable
	D.6. CollectionAttribute
	D.7. EmbeddableType
	D.8. EntityType
	D.9. IdentifiableType
	D.10. ListAttribute
	D.11. ManagedType
	D.12. MapAttribute
	D.13. MappedSuperclassType
	D.14. PluralAttribute
	D.15. SetAttribute
	D.16. SingularAttribute
	D.17. Type

	Appendix E: Persistence SPI Interfaces
	E.1. ClassTransformer
	E.2. LoadState
	E.3. PersistenceProvider
	E.4. PersistenceProviderResolver
	E.5. PersistenceProviderResolverHolder
	E.6. PersistenceUnitInfo
	E.7. ProviderUtil

